Machine Learning & Artificial Intelligence | Data Science Free Courses
64.4K subscribers
557 photos
2 videos
98 files
425 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
This post is for beginners who decided to learn Data Science. I want to tell you that becoming a data scientist is a journey (6 months - 1 year at least) and not a 1 month thing where u do some courses and you are a data scientist. There are different fields in Data Science that you have to first get familiar and strong in basics as well as do hands-on to get the abilities that are required to function in a full time job opportunity. Then further delve into advanced implementations.

There are plenty of roadmaps and online content both paid and free that you can follow. In a nutshell. A few essential things that will be necessary and in no particular order that will at least get your data science journey started are below:

Basic Statistics, Linear Algebra, calculus, probability
Programming language (R or Python) - Preferably Python if you rather want to later on move into a developer role instead of sticking to data science.
Machine Learning - All of the above will be used here to implement machine learning concepts.
Data Visualisation - again it could be simple excel or via r/python libraries or tools like Tableau,PowerBI etc.

This can be overwhelming but again its just an indication of what lies ahead. So most important thing is to just START instead of just contemplating the best way to go about this. Since lot of things can be learnt independently as well in no particular order.

You can use the below Sources to prepare your own roadmap:
@free4unow_backup - some free courses from here
@datasciencefun - check & search in this channel with #freecourses

Data Science - https://365datascience.pxf.io/q4m66g
Python - https://bit.ly/45rlWZE
Kaggle - https://www.kaggle.com/learn
πŸ‘6
Tech stack for Machine Learning:

- ml workflow orchestrator: Kubeflow
- experiment tracking: MLflow
- data ingestion: Airbyte
- job orchestrator: Apache Airflow
- batch pipeline: Apache Spark
- message queue for real-time streaming: Apache Kafka
- feature engineering: Scikit-learn
- model selection and training: Pytorch
- hyperparameter tuning: Ray Tune
- model evaluation: Weights & Biases
- model monitoring: Grafana
- CI/CD: Github actions
- model versioning: neptune
- model serving: BentoML
- web app framework: Flask
- front-end: React
- feature store: Qwak
- Graph database: Neo4j
- Vector database: ChromaDB
- NoSQL database: MongoDB
- In-memory data store: Redis
πŸ‘6
Skills for Data Scientists πŸ‘†
❀2πŸ‘1
πŸ‘‡ Exercises in Machine Learning

Book
❀10
Some essential concepts every data scientist should understand:

### 1. Statistics and Probability
- Purpose: Understanding data distributions and making inferences.
- Core Concepts: Descriptive statistics (mean, median, mode), inferential statistics, probability distributions (normal, binomial), hypothesis testing, p-values, confidence intervals.

### 2. Programming Languages
- Purpose: Implementing data analysis and machine learning algorithms.
- Popular Languages: Python, R.
- Libraries: NumPy, Pandas, Scikit-learn (Python), dplyr, ggplot2 (R).

### 3. Data Wrangling
- Purpose: Cleaning and transforming raw data into a usable format.
- Techniques: Handling missing values, data normalization, feature engineering, data aggregation.

### 4. Exploratory Data Analysis (EDA)
- Purpose: Summarizing the main characteristics of a dataset, often using visual methods.
- Tools: Matplotlib, Seaborn (Python), ggplot2 (R).
- Techniques: Histograms, scatter plots, box plots, correlation matrices.

### 5. Machine Learning
- Purpose: Building models to make predictions or find patterns in data.
- Core Concepts: Supervised learning (regression, classification), unsupervised learning (clustering, dimensionality reduction), model evaluation (accuracy, precision, recall, F1 score).
- Algorithms: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-means clustering, principal component analysis (PCA).

### 6. Deep Learning
- Purpose: Advanced machine learning techniques using neural networks.
- Core Concepts: Neural networks, backpropagation, activation functions, overfitting, dropout.
- Frameworks: TensorFlow, Keras, PyTorch.

### 7. Natural Language Processing (NLP)
- Purpose: Analyzing and modeling textual data.
- Core Concepts: Tokenization, stemming, lemmatization, TF-IDF, word embeddings.
- Techniques: Sentiment analysis, topic modeling, named entity recognition (NER).

### 8. Data Visualization
- Purpose: Communicating insights through graphical representations.
- Tools: Matplotlib, Seaborn, Plotly (Python), ggplot2, Shiny (R), Tableau.
- Techniques: Bar charts, line graphs, heatmaps, interactive dashboards.

### 9. Big Data Technologies
- Purpose: Handling and analyzing large volumes of data.
- Technologies: Hadoop, Spark.
- Core Concepts: Distributed computing, MapReduce, parallel processing.

### 10. Databases
- Purpose: Storing and retrieving data efficiently.
- Types: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra).
- Core Concepts: Querying, indexing, normalization, transactions.

### 11. Time Series Analysis
- Purpose: Analyzing data points collected or recorded at specific time intervals.
- Core Concepts: Trend analysis, seasonal decomposition, ARIMA models, exponential smoothing.

### 12. Model Deployment and Productionization
- Purpose: Integrating machine learning models into production environments.
- Techniques: API development, containerization (Docker), model serving (Flask, FastAPI).
- Tools: MLflow, TensorFlow Serving, Kubernetes.

### 13. Data Ethics and Privacy
- Purpose: Ensuring ethical use and privacy of data.
- Core Concepts: Bias in data, ethical considerations, data anonymization, GDPR compliance.

### 14. Business Acumen
- Purpose: Aligning data science projects with business goals.
- Core Concepts: Understanding key performance indicators (KPIs), domain knowledge, stakeholder communication.

### 15. Collaboration and Version Control
- Purpose: Managing code changes and collaborative work.
- Tools: Git, GitHub, GitLab.
- Practices: Version control, code reviews, collaborative development.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING πŸ‘πŸ‘
πŸ‘7❀3
Machine Learning isn't easy!

It’s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidlyβ€”keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

πŸ’‘ Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content πŸ˜„πŸ‘

Hope this helps you 😊

#datascience
❀4πŸ‘4
ML Algorithms πŸ’ͺ
πŸ‘4❀2
Neural Networks and Deep Learning
Neural networks and deep learning are integral parts of artificial intelligence (AI) and machine learning (ML). Here's an overview:

1.Neural Networks: Neural networks are computational models inspired by the human brain's structure and functioning. They consist of interconnected nodes (neurons) organized in layers: input layer, hidden layers, and output layer.

Each neuron receives input, processes it through an activation function, and passes the output to the next layer. Neurons in subsequent layers perform more complex computations based on previous layers' outputs.

Neural networks learn by adjusting weights and biases associated with connections between neurons through a process called training. This is typically done using optimization techniques like gradient descent and backpropagation.

2.Deep Learning : Deep learning is a subset of ML that uses neural networks with multiple layers (hence the term "deep"), allowing them to learn hierarchical representations of data.

These networks can automatically discover patterns, features, and representations in raw data, making them powerful for tasks like image recognition, natural language processing (NLP), speech recognition, and more.

Deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer models have demonstrated exceptional performance in various domains.

3.Applications Computer Vision: Object detection, image classification, facial recognition, etc., leveraging CNNs.

Natural Language Processing (NLP) Language translation, sentiment analysis, chatbots, etc., utilizing RNNs, LSTMs, and Transformers.
Speech Recognition: Speech-to-text systems using deep neural networks.

4.Challenges and Advancements: Training deep neural networks often requires large amounts of data and computational resources. Techniques like transfer learning, regularization, and optimization algorithms aim to address these challenges.

Advancements in hardware (GPUs, TPUs), algorithms (improved architectures like GANs - Generative Adversarial Networks), and techniques (attention mechanisms) have significantly contributed to the success of deep learning.

5. Frameworks and Libraries: There are various open-source libraries and frameworks (TensorFlow, PyTorch, Keras, etc.) that provide tools and APIs for building, training, and deploying neural networks and deep learning models.

Join for more: https://t.iss.one/machinelearning_deeplearning
πŸ‘3❀1
Roadmap To Learn Machine Learning
πŸ‘4