Machine Learning & Artificial Intelligence | Data Science Free Courses
64.5K subscribers
557 photos
2 videos
98 files
425 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
Will LLMs always hallucinate?

As large language models (LLMs) become more powerful and pervasive, it's crucial that we understand their limitations.

A new paper argues that hallucinations - where the model generates false or nonsensical information - are not just occasional mistakes, but an inherent property of these systems.

While the idea of hallucinations as features isn't new, the researchers' explanation is.

They draw on computational theory and GΓΆdel's incompleteness theorems to show that hallucinations are baked into the very structure of LLMs.

In essence, they argue that the process of training and using these models involves undecidable problems - meaning there will always be some inputs that cause the model to go off the rails.

This would have big implications. It suggests that no amount of architectural tweaks, data cleaning, or fact-checking can fully eliminate hallucinations.

So what does this mean in practice? For one, it highlights the importance of using LLMs carefully, with an understanding of their limitations.

It also suggests that research into making models more robust and understanding their failure modes is crucial.

No matter how impressive the results, LLMs are not oracles - they're tools with inherent flaws and biases

LLM & Generative AI Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
πŸ‘5🀣1
An high level overview for becoming a machine learning engineer
❀4πŸ‘1
Machine learning algorithms
πŸ‘4❀1
Data Scientist vs Data Analyst πŸ‘†
Preparing for a machine learning interview as a data analyst is a great step.

Here are some common machine learning interview questions :-

1. Explain the steps involved in a machine learning project lifecycle.

2. What is the difference between supervised and unsupervised learning? Give examples of each.

3. What evaluation metrics would you use to assess the performance of a regression model?

4. What is overfitting and how can you prevent it?

5. Describe the bias-variance tradeoff.

6. What is cross-validation, and why is it important in machine learning?

7. What are some feature selection techniques you are familiar with?

8.What are the assumptions of linear regression?

9. How does regularization help in linear models?

10. Explain the difference between classification and regression.

11. What are some common algorithms used for dimensionality reduction?

12. Describe how a decision tree works.

13. What are ensemble methods, and why are they useful?

14. How do you handle missing or corrupted data in a dataset?

15. What are the different kernels used in Support Vector Machines (SVM)?


These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!


Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content πŸ˜„πŸ‘
πŸ‘8❀2
Free Session to learn Data Analytics, Data Science & AI
πŸ‘‡πŸ‘‡
https://tracking.acciojob.com/g/PUfdDxgHR

Register fast, only for first few users
πŸ‘5
⌨️ Python Tips & Tricks
πŸ₯°1
πŸ”— Become a Machine Learning Expert in 7 Steps
πŸ‘5
Data Science Roadmap
❀4πŸ‘3πŸ₯°1