Machine Learning & Artificial Intelligence | Data Science Free Courses
64.5K subscribers
557 photos
2 videos
98 files
425 links
Perfect channel to learn Data Analytics, Data Sciene, Machine Learning & Artificial Intelligence

Admin: @coderfun
Download Telegram
10 Steps of Machine Learning ๐Ÿ‘†
๐Ÿ‘7๐Ÿคฃ1
Important Topics to become a data scientist
[Advanced Level]
๐Ÿ‘‡๐Ÿ‘‡

1. Mathematics

Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification

2. Probability

Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution

3. Statistics

Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression

4. Programming

Python:

Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn

R Programming:

R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny

DataBase:
SQL
MongoDB

Data Structures

Web scraping

Linux

Git

5. Machine Learning

How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage

6. Deep Learning

Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification

7. Feature Engineering

Baseline Model
Categorical Encodings
Feature Generation
Feature Selection

8. Natural Language Processing

Text Classification
Word Vectors

9. Data Visualization Tools

BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense

10. Deployment

Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django

Join @datasciencefun to learning important data science and machine learning concepts

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘7โค3๐Ÿคฃ1
Machine Learning Algorithm
๐Ÿ‘9๐Ÿ˜1
Data Scientist Interview Questions


1. How would you test whether a given dataset follows a normal distribution?
2. Explain the difference between Type I and Type II errors. How do they impact hypothesis testing?
3. You roll two dice. What is the probability that the sum is at least 8?
4. Given a biased coin that lands on heads with probability p, how can you generate a fair coin flip using it?
5. How would you detect and handle outliers in a dataset?
6. How do you deal with an imbalanced dataset in classification problems?
7. Explain how the Gradient Boosting Algorithm works. How is it different from Random Forest?
8. You are given a trained model with poor performance on new data. How would you debug the issue?
9. What is the curse of dimensionality? How do you mitigate its effects?
10. How do you choose the best number of clusters in K-means clustering?
11. Given a table of transactions, write an SQL query to find the top 3 customers with the highest total purchase amount.
12. How would you optimize a slow SQL query that joins multiple large tables?
13. Write an SQL query to calculate the rolling average of sales over the past 7 days.
14. How would you handle NULL values in an SQL dataset when performing aggregations?
15. How would you design a real-time recommendation system for an e-commerce website?

Answering these questions requires an in-depth knowledge of Data Scientist concepts.
๐Ÿ‘7๐Ÿ˜1
5 data science questions you should be able to answer for a data scientist role.

๐Œ๐ž๐๐ข๐ฎ๐ฆ ๐ฅ๐ž๐ฏ๐ž๐ฅ

1. Name ML algorithms that do not use Gradient Descent for optimization.

2. Explain how you construct an ROC-AUC curve.

3. Give examples of business cases where precision is more important than recall, and vice versa.

4. Whatโ€™s the difference between bagging and boosting, and when would you use one over the other?

5. How do MLE and MAP differ?
๐Ÿ‘1๐Ÿคฃ1
The Data Science Sandwich
๐Ÿ‘7๐Ÿ˜1
Many data scientists don't know how to push ML models to production. Here's the recipe ๐Ÿ‘‡

๐—ž๐—ฒ๐˜† ๐—œ๐—ป๐—ด๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฒ๐—ป๐˜๐˜€

๐Ÿ”น ๐—ง๐—ฟ๐—ฎ๐—ถ๐—ป / ๐—ง๐—ฒ๐˜€๐˜ ๐——๐—ฎ๐˜๐—ฎ๐˜€๐—ฒ๐˜ - Ensure Test is representative of Online data
๐Ÿ”น ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ - Generate features in real-time
๐Ÿ”น ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ข๐—ฏ๐—ท๐—ฒ๐—ฐ๐˜ - Trained SkLearn or Tensorflow Model
๐Ÿ”น ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—ฑ๐—ฒ ๐—ฅ๐—ฒ๐—ฝ๐—ผ - Save model project code to Github
๐Ÿ”น ๐—”๐—ฃ๐—œ ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜„๐—ผ๐—ฟ๐—ธ - Use FastAPI or Flask to build a model API
๐Ÿ”น ๐——๐—ผ๐—ฐ๐—ธ๐—ฒ๐—ฟ - Containerize the ML model API
๐Ÿ”น ๐—ฅ๐—ฒ๐—บ๐—ผ๐˜๐—ฒ ๐—ฆ๐—ฒ๐—ฟ๐˜ƒ๐—ฒ๐—ฟ - Choose a cloud service; e.g. AWS sagemaker
๐Ÿ”น ๐—จ๐—ป๐—ถ๐˜ ๐—ง๐—ฒ๐˜€๐˜๐˜€ - Test inputs & outputs of functions and APIs
๐Ÿ”น ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด - Evidently AI, a simple, open-source for ML monitoring

๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐—ฑ๐˜‚๐—ฟ๐—ฒ

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ - ๐——๐—ฎ๐˜๐—ฎ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด

Don't push a model with 90% accuracy on train set. Do it based on the test set - if and only if, the test set is representative of the online data. Use SkLearn pipeline to chain a series of model preprocessing functions like null handling.

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ - ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜

Train your model with frameworks like Sklearn or Tensorflow. Push the model code including preprocessing, training and validation scripts to Github for reproducibility.

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ - ๐—”๐—ฃ๐—œ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ & ๐—–๐—ผ๐—ป๐˜๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฟ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป

Your model needs a "/predict" endpoint, which receives a JSON object in the request input and generates a JSON object with the model score in the response output. You can use frameworks like FastAPI or Flask. Containzerize this API so that it's agnostic to server environment

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ - ๐—ง๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด & ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜

Write tests to validate inputs & outputs of API functions to prevent errors. Push the code to remote services like AWS Sagemaker.

๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ - ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด

Set up monitoring tools like Evidently AI, or use a built-in one within AWS Sagemaker. I use such tools to track performance metrics and data drifts on online data.
๐Ÿ‘7๐Ÿ˜1