๐ฅ Large Language Model Course
The popular free LLM course has just been updated.
This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.
The course is divided into 3 parts:
1๏ธโฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.
โญ๏ธ 41.4k stars on Github
๐ https://github.com/mlabonne/llm-course
#llm #course #opensource #ml
The popular free LLM course has just been updated.
This is a step-by-step guide with useful resources and notebooks for both beginners and those who already have an ml-base.
The course is divided into 3 parts:
1๏ธโฃ LLM Fundamentals : The block provides fundamental knowledge of mathematics, Python and neural networks.
2๏ธโฃ LLM Scientist : This block focuses on the internal structure of LLMs and their creation using the latest technologies and frameworks.
3๏ธโฃ The LLM Engineer : Here you will learn how to write applications in a hands-on way and how to deploy them.
โญ๏ธ 41.4k stars on Github
๐ https://github.com/mlabonne/llm-course
#llm #course #opensource #ml
โค5๐4
The Roadmap for Mastering Machine Learning in 2025
Link: https://machinelearningmastery.com/roadmap-mastering-machine-learning-2025/
Link: https://machinelearningmastery.com/roadmap-mastering-machine-learning-2025/
๐6
For those of you who are new to Data Science and Machine learning algorithms, let me try to give you a brief overview. ML Algorithms can be categorized into three types: supervised learning, unsupervised learning, and reinforcement learning.
1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.
2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.
3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content
ENJOY LEARNING ๐๐
1. Supervised Learning:
- Definition: Algorithms learn from labeled training data, making predictions or decisions based on input-output pairs.
- Examples: Linear regression, decision trees, support vector machines (SVM), and neural networks.
- Applications: Email spam detection, image recognition, and medical diagnosis.
2. Unsupervised Learning:
- Definition: Algorithms analyze and group unlabeled data, identifying patterns and structures without prior knowledge of the outcomes.
- Examples: K-means clustering, hierarchical clustering, and principal component analysis (PCA).
- Applications: Customer segmentation, market basket analysis, and anomaly detection.
3. Reinforcement Learning:
- Definition: Algorithms learn by interacting with an environment, receiving rewards or penalties based on their actions, and optimizing for long-term goals.
- Examples: Q-learning, deep Q-networks (DQN), and policy gradient methods.
- Applications: Robotics, game playing (like AlphaGo), and self-driving cars.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content
ENJOY LEARNING ๐๐
๐5
โ
๐-๐๐ญ๐๐ฉ ๐๐จ๐๐๐ฆ๐๐ฉ ๐ญ๐จ ๐๐ฐ๐ข๐ญ๐๐ก ๐ข๐ง๐ญ๐จ ๐ญ๐ก๐ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ข๐๐ฅ๐โ
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐น Supervised Learning - Key Algorithms ๐น
1๏ธโฃ Linear Regression โ Predicts continuous values by fitting a straight line. (๐ House prices)
2๏ธโฃ Logistic Regression โ Classifies data into categories (yes/no). (๐ฉ Spam detection)
3๏ธโฃ SVM (Support Vector Machine) โ Finds the best boundary to separate classes. (๐ Image classification)
4๏ธโฃ Decision Tree โ Splits data based on conditions to classify. (๐ณ Diagnosing diseases)
5๏ธโฃ Random Forest โ Multiple decision trees combined for accuracy. (๐ฆ Loan predictions)
6๏ธโฃ k-NN (k-Nearest Neighbors) โ Classifies based on the nearest neighbors. (๐ Product recommendations)
7๏ธโฃ Naive Bayes โ Uses probability to classify data. (๐จ Spam filter)
8๏ธโฃ Gradient Boosting โ Combines weak models to build a strong one. (๐ Customer churn prediction)
9๏ธโฃ XGBoost โ Faster and more efficient gradient boosting. (๐ Machine learning competitions)
โจ Key Tip: Choose algorithms based on data type (classification/regression)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
1๏ธโฃ Linear Regression โ Predicts continuous values by fitting a straight line. (๐ House prices)
2๏ธโฃ Logistic Regression โ Classifies data into categories (yes/no). (๐ฉ Spam detection)
3๏ธโฃ SVM (Support Vector Machine) โ Finds the best boundary to separate classes. (๐ Image classification)
4๏ธโฃ Decision Tree โ Splits data based on conditions to classify. (๐ณ Diagnosing diseases)
5๏ธโฃ Random Forest โ Multiple decision trees combined for accuracy. (๐ฆ Loan predictions)
6๏ธโฃ k-NN (k-Nearest Neighbors) โ Classifies based on the nearest neighbors. (๐ Product recommendations)
7๏ธโฃ Naive Bayes โ Uses probability to classify data. (๐จ Spam filter)
8๏ธโฃ Gradient Boosting โ Combines weak models to build a strong one. (๐ Customer churn prediction)
9๏ธโฃ XGBoost โ Faster and more efficient gradient boosting. (๐ Machine learning competitions)
โจ Key Tip: Choose algorithms based on data type (classification/regression)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
๐5โค2
Basics of Machine Learning ๐๐
Free Resources to learn Machine Learning: https://t.iss.one/free4unow_backup/587
Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:
1. Supervised Learning: The algorithm is trained on a labeled dataset, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
Join @datasciencefun for more
ENJOY LEARNING ๐๐
Free Resources to learn Machine Learning: https://t.iss.one/free4unow_backup/587
Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:
1. Supervised Learning: The algorithm is trained on a labeled dataset, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
Join @datasciencefun for more
ENJOY LEARNING ๐๐
๐5โค1
A-Z of essential data science concepts
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
๐4โค2
Powerful Functions in Python
โค2๐1
AI Engineer Essentials
Deep Learning: Neural networks, CNNs, RNNs, transformers.
Programming: Python, TensorFlow, PyTorch, Keras.
NLP: NLTK, SpaCy, Hugging Face.
Computer Vision: OpenCV techniques.
Reinforcement Learning: RL algorithms and applications.
LLMs and Transformers: Advanced language models.
LangChain and RAG: Retrieval-augmented generation techniques.
Vector Databases: Managing embeddings and vectors.
AI Ethics: Ethical considerations and bias in AI.
R&D: Implementing AI research papers.
Deep Learning: Neural networks, CNNs, RNNs, transformers.
Programming: Python, TensorFlow, PyTorch, Keras.
NLP: NLTK, SpaCy, Hugging Face.
Computer Vision: OpenCV techniques.
Reinforcement Learning: RL algorithms and applications.
LLMs and Transformers: Advanced language models.
LangChain and RAG: Retrieval-augmented generation techniques.
Vector Databases: Managing embeddings and vectors.
AI Ethics: Ethical considerations and bias in AI.
R&D: Implementing AI research papers.
๐4
An Artificial Neuron Network (ANN), popularly known as Neural Network is a computational model based on the structure and functions of biological neural networks. It is like an artificial human nervous system for receiving, processing, and transmitting information in terms of Computer Science.
Basically, there are 3 different layers in a neural network :
Input Layer (All the inputs are fed in the model through this layer)
Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)
Output Layer (The data after processing is made available at the output layer)
Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
Basically, there are 3 different layers in a neural network :
Input Layer (All the inputs are fed in the model through this layer)
Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)
Output Layer (The data after processing is made available at the output layer)
Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
๐5โค2