📊 Неожиданная статистика по ИИ-ассистентам
Сообщают, что Microsoft Copilot значительно опережает Gemini по числу пользователей. На первый взгляд это выглядит странно.
Возможное объяснение: речь идёт не о реальном использовании, а о количестве активированных аккаунтов и доступе по умолчанию (Copilot встроен в Windows и Office).
Ещё более удивительно, что Claude якобы сильно отстаёт — и это тоже вызывает вопросы, ведь его активно используют в сообществе.
⚡️ Мораль: статистику по ИИ стоит читать внимательно — важно, что именно считают: доступ, активации или реальное использование.
https://gs.statcounter.com/ai-chatbot-market-share#monthly-202508-202508-bar
#ai #copilot #gemini #claude
Сообщают, что Microsoft Copilot значительно опережает Gemini по числу пользователей. На первый взгляд это выглядит странно.
Возможное объяснение: речь идёт не о реальном использовании, а о количестве активированных аккаунтов и доступе по умолчанию (Copilot встроен в Windows и Office).
Ещё более удивительно, что Claude якобы сильно отстаёт — и это тоже вызывает вопросы, ведь его активно используют в сообществе.
⚡️ Мораль: статистику по ИИ стоит читать внимательно — важно, что именно считают: доступ, активации или реальное использование.
https://gs.statcounter.com/ai-chatbot-market-share#monthly-202508-202508-bar
#ai #copilot #gemini #claude
👍1
🔥 7 бесплатных интерактивов для аналитиков
Эти сервисы — не просто игрушки, а мощные симуляторы, которые помогают прокачивать аналитику через практику.
Они отлично подходят для подготовки к собеседованиям, изучения новых концепций или просто для того, чтобы «залипнуть» с пользой.
Вот подборка, в которую я сам возвращаюсь снова и снова:
1️⃣ Симулятор стартапа — teachmegrow.com
2️⃣ A/B-тесты на практике — lukasvermeer.nl/confidence
3️⃣ Эволюция доверия — notdotteam.github.io/trust
4️⃣ UX-игра на внимательность — cantunsee.space
5️⃣ UX Arcade — uxcel.com/arcade
6️⃣ Вероятности и статистика на пальцах — seeing-theory.brown.edu
7️⃣ Алгоритмы в картинках — visualgo.net
💡 Сохраняйте, проходите и делитесь с коллегами — это реально полезный интерактив.
Эти сервисы — не просто игрушки, а мощные симуляторы, которые помогают прокачивать аналитику через практику.
Они отлично подходят для подготовки к собеседованиям, изучения новых концепций или просто для того, чтобы «залипнуть» с пользой.
Вот подборка, в которую я сам возвращаюсь снова и снова:
1️⃣ Симулятор стартапа — teachmegrow.com
2️⃣ A/B-тесты на практике — lukasvermeer.nl/confidence
3️⃣ Эволюция доверия — notdotteam.github.io/trust
4️⃣ UX-игра на внимательность — cantunsee.space
5️⃣ UX Arcade — uxcel.com/arcade
6️⃣ Вероятности и статистика на пальцах — seeing-theory.brown.edu
7️⃣ Алгоритмы в картинках — visualgo.net
💡 Сохраняйте, проходите и делитесь с коллегами — это реально полезный интерактив.
❤3👍3
⚛️🔬🚀 PsiQuantum привлекла рекордные $1 млрд для строительства квантового компьютера с 1 млн кубитов к 2028 году — это крупнейший раунд финансирования в истории квантовых технологий.
📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.
💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.
Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.
⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ
🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры
🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.
🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a
#quantum #ai #nvidia #google #ibm #hardware #future
📈 Теперь компания оценена в $7 млрд и напрямую конкурирует с Google и IBM в гонке за создание полнофункциональной машины.
💰 Среди инвесторов: BlackRock, Temasek, Baillie Gifford и венчурное подразделение Nvidia.
Квантовые компьютеры рассматриваются как ключ к созданию новых материалов и разработке лекарств, с чем классические методы справиться не могут. Но реальная польза от них появится только тогда, когда кубиты будут достаточно стабильны, а коррекция ошибок станет рабочим стандартом. PsiQuantum делает ставку на фотонные кубиты — частицы света, которые можно производить на обычных полупроводниковых фабриках и использовать с меньшим количеством криогенного оборудования. Именно эта ставка может позволить компании обойти конкурентов.
⚠️ Вызовы
- Полной коррекции ошибок пока нет
- Ранее цель на 2024 год по готовой системе была сорвана
- 1 млн физических кубитов нужен, чтобы получить лишь несколько надёжных логических кубитов для долгих программ
🌍 Контекст
- Конкуренты активно растут: Quantinuum собрал $600M (оценка $10B), IQM — $300M
- IonQ, Rigetti и D-Wave взлетели в капитализации до $22B (с <$5B в ноябре)
- Nvidia участвует в проекте, несмотря на осторожные прогнозы (20 лет до работающих систем), делая ставку на гибридный путь: квантовые + GPU суперкомпьютеры
🏗️ Первую полную квантовую установку PsiQuantum планирует построить в Австралии при поддержке правительства (A$940M), а вторую — в Чикаго.
🔗 Подробнее: https://ft.com/content/0a16281f-6bb4-4e60-a6f0-3a9d6f8d764a
#quantum #ai #nvidia #google #ibm #hardware #future
😨1
Введение. Собеседования на позиции, связанные с данными (аналитики, инженеры, ученые данных), всё чаще включают нестандартные и продвинутые вопросы по SQL.
Большие технологические компании (Google, Amazon и др.) предъявляют высокие требования: важна не только правильность запроса, но и умение оптимизировать его и разбираться в реальных бизнес-данных.
В этом гайде мы разберем категории наиболее распространенных сложных SQL-задач с реальных собеседований – от платформ вроде DataLemur, LeetCode, StrataScratch – и подробно поясним решения.
Каждая задача сопровождена анализом: условие, оптимальный подход, используемые SQL-конструкции, возможные ошибки и финальное решение (для PostgreSQL и MySQL, с указанием различий где необходимо).
В конце добавлен отдельный раздел о современных базах данных, включая векторные БД (Pinecone, Weaviate, Milvus и др.), с примерами того, что могут спросить про них на собеседовании и как выглядят SQL-подобные запросы для работы с векторами.
📌 Читать гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2
WeClone — комплексное решение для создания цифрового аватара на основе истории чатов
Можно настроить LLM с помощью логов, чтобы передать свой уникальный стиль, а затем привяжите его к чат-боту, чтобы оживить своего цифрового двойника.
Чnо внутри:
▫️ Комплексное решение для создания цифровых аватаров, включающее экспорт данных чата, предварительную обработку, обучение модели и развертывание
▫️ Доработайте LLM, используя историю чатов с поддержкой модальных данных изображений, чтобы придать ему аутентичный «колорит»
▫️ Интеграция с Telegram и WhatsApp (скоро появится) для создания собственного цифрового аватара
Можно настроить LLM с помощью логов, чтобы передать свой уникальный стиль, а затем привяжите его к чат-боту, чтобы оживить своего цифрового двойника.
Чnо внутри:
▫️ Комплексное решение для создания цифровых аватаров, включающее экспорт данных чата, предварительную обработку, обучение модели и развертывание
▫️ Доработайте LLM, используя историю чатов с поддержкой модальных данных изображений, чтобы придать ему аутентичный «колорит»
▫️ Интеграция с Telegram и WhatsApp (скоро появится) для создания собственного цифрового аватара
Forwarded from Анализ данных (Data analysis)
🚀 Хотите ускорить обучение в PyTorch в несколько раз?
У DataLoader есть два плохих дефолта, которые тормозят процесс.
Исправив их, я получил почти 5x ускорение.
❌ Проблема
-
- Пока GPU считает - CPU ничего не делает.
- Пока CPU готовит данные — GPU простаивает.
⚡ Решение
Нужно заставить CPU и GPU работать параллельно:
- В
- При переносе данных используй
- Добавь
✅ В итоге CPU готовит следующий батч, пока GPU занят текущим.
Так исчезают простои, и обучение идёт заметно быстрее.
У DataLoader есть два плохих дефолта, которые тормозят процесс.
Исправив их, я получил почти 5x ускорение.
❌ Проблема
-
.to(device) переносит данные на GPU. - Пока GPU считает - CPU ничего не делает.
- Пока CPU готовит данные — GPU простаивает.
⚡ Решение
Нужно заставить CPU и GPU работать параллельно:
- В
DataLoader укажи pin_memory=True - При переносе данных используй
.to(device, non_blocking=True) - Добавь
num_workers в DataLoader для фоновой загрузки. ✅ В итоге CPU готовит следующий батч, пока GPU занят текущим.
Так исчезают простои, и обучение идёт заметно быстрее.
❤5👍5
📌 Характеристики:
- 200M параметров (было 500M)
- Контекст 16k (было 2k)
- Доступна на Hugging Face
- Лицензия Apache 2.0
#TimeSeries #Forecasting #AI #ML #OpenSource
https://huggingface.co/google/timesfm-2.5-200m-pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧢CAP4D🧢!
Модель можно генерировать анимируемые 4D-аватары из любых изображений + управляющего видео.
🤩 Поддерживаются даже стилизованные фото!
👉 Код: github.com/felixtaubner/cap4d
🏠 Проект: felixtaubner.github.io/cap4d/
Модель можно генерировать анимируемые 4D-аватары из любых изображений + управляющего видео.
🤩 Поддерживаются даже стилизованные фото!
👉 Код: github.com/felixtaubner/cap4d
🏠 Проект: felixtaubner.github.io/cap4d/
Please open Telegram to view this post
VIEW IN TELEGRAM
Профессиональный гайд по работе с ChatGPT (2025)
Как использовать ChatGPT не просто как «умного собеседника», а как полноценного помощника для программирования, маркетинга, аналитики и обучения?
Мы разберём, какие версии модели существуют, какие плагины открывают новые возможности, как строить промпты так, чтобы получать точные и полезные ответы, и как интегрировать ChatGPT в рабочие процессы.
Если у вас нет доступа к chatgpt можете использовать бесплатного бота в телеге, чтобы потестить все техники из статьи или воспользоваться обычной версией с помощью всем известного обхода блокировки.
Не будем тянуть время, Поехали!
📌 Гайд
Как использовать ChatGPT не просто как «умного собеседника», а как полноценного помощника для программирования, маркетинга, аналитики и обучения?
Мы разберём, какие версии модели существуют, какие плагины открывают новые возможности, как строить промпты так, чтобы получать точные и полезные ответы, и как интегрировать ChatGPT в рабочие процессы.
Если у вас нет доступа к chatgpt можете использовать бесплатного бота в телеге, чтобы потестить все техники из статьи или воспользоваться обычной версией с помощью всем известного обхода блокировки.
Не будем тянуть время, Поехали!
📌 Гайд
❤2👍1
🌍 State of AI Report 2025 - Главное из отчёта
Ежегодный отчёт State of AI Report - это самый влиятельный обзор тенденций в области искусственного интеллекта, публикуемый с 2018 года инвестором Nathan Benaich и фондом Air Street Capital.
В 2025 году отчёт охватывает 6 направлений: исследования, индустрию, политику, безопасность, опрос практиков и прогнозы.
📊 Ключевые выводы
1. OpenAI удерживает лидерство, но Китай быстро сокращает отрыв. DeepSeek, Qwen и Kimi почти сравнялись в задачах рассуждения и программирования.
2. Год рассуждения — модели научились планировать, самоисправляться и мыслить пошагово.
3. ИИ стал научным соавтором — примеры: Co-Scientist от DeepMind и Virtual Lab от Stanford.
4. Chain-of-Action планирование — роботы теперь рассуждают перед действием (Google Gemini Robotics 1.5, AI2 Molmo-Act).
5. Коммерциализация ускорилась:
- 44 % компаний в США платят за ИИ-инструменты (в 2023 г. — 5 %)
- Средний контракт — $530 000
- Стартапы с ИИ растут в 1.5× быстрее обычных
6. Опрос 1200 специалистов:
- 95 % используют ИИ дома или на работе
- 76 % платят за него из собственного кармана
- Большинство отмечают устойчивый рост продуктивности
7. Началась индустриальная эра ИИ — мегадата-центры (Stargate, фонды США, ОАЭ, Китая). Энергия становится новым лимитирующим фактором.
8. Политика ИИ ужесточилась:
- США делают ставку на *America-first AI*
- Европейский AI Act буксует
- Китай развивает открытые модели и собственные чипы
9. Безопасность переходит к прагматизму:
- Модели имитируют выравнивание (alignment), усиливая дискуссию о прозрачности
- Бюджеты safety-организаций несопоставимы с расходами лидеров
10. Риски экзистенции сменились фокусом на надёжность, киберустойчивость и долгосрочное управление автономными системами.
🔮 Прогнозы авторов
- Рост затрат на обучение сверхмоделей → дефицит энергии и GPU
- Конкуренция между OpenAI, DeepSeek, Anthropic и Google усилится
- Frontier-модели будут тренироваться в многоэтапных средах с постоянной самопроверкой
- Всё больше экспериментов с «живыми агентами» в физическом мире
- Усиление регулирования и новые требования к прозрачности reasoning-цепочек
📘 Полный отчёт доступен здесь: https://www.stateof.ai/
Ежегодный отчёт State of AI Report - это самый влиятельный обзор тенденций в области искусственного интеллекта, публикуемый с 2018 года инвестором Nathan Benaich и фондом Air Street Capital.
В 2025 году отчёт охватывает 6 направлений: исследования, индустрию, политику, безопасность, опрос практиков и прогнозы.
📊 Ключевые выводы
1. OpenAI удерживает лидерство, но Китай быстро сокращает отрыв. DeepSeek, Qwen и Kimi почти сравнялись в задачах рассуждения и программирования.
2. Год рассуждения — модели научились планировать, самоисправляться и мыслить пошагово.
3. ИИ стал научным соавтором — примеры: Co-Scientist от DeepMind и Virtual Lab от Stanford.
4. Chain-of-Action планирование — роботы теперь рассуждают перед действием (Google Gemini Robotics 1.5, AI2 Molmo-Act).
5. Коммерциализация ускорилась:
- 44 % компаний в США платят за ИИ-инструменты (в 2023 г. — 5 %)
- Средний контракт — $530 000
- Стартапы с ИИ растут в 1.5× быстрее обычных
6. Опрос 1200 специалистов:
- 95 % используют ИИ дома или на работе
- 76 % платят за него из собственного кармана
- Большинство отмечают устойчивый рост продуктивности
7. Началась индустриальная эра ИИ — мегадата-центры (Stargate, фонды США, ОАЭ, Китая). Энергия становится новым лимитирующим фактором.
8. Политика ИИ ужесточилась:
- США делают ставку на *America-first AI*
- Европейский AI Act буксует
- Китай развивает открытые модели и собственные чипы
9. Безопасность переходит к прагматизму:
- Модели имитируют выравнивание (alignment), усиливая дискуссию о прозрачности
- Бюджеты safety-организаций несопоставимы с расходами лидеров
10. Риски экзистенции сменились фокусом на надёжность, киберустойчивость и долгосрочное управление автономными системами.
🔮 Прогнозы авторов
- Рост затрат на обучение сверхмоделей → дефицит энергии и GPU
- Конкуренция между OpenAI, DeepSeek, Anthropic и Google усилится
- Frontier-модели будут тренироваться в многоэтапных средах с постоянной самопроверкой
- Всё больше экспериментов с «живыми агентами» в физическом мире
- Усиление регулирования и новые требования к прозрачности reasoning-цепочек
📘 Полный отчёт доступен здесь: https://www.stateof.ai/
❤2👍2
Этот курс охватывает ключевые математические концепции, лежащие в основе современных алгоритмов машинного обучения, таких как линейная алгебра, теория вероятностей, статистика и оптимизация.
Курс
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Классические LLM ограничены собственным контекстом: они выдают только то, что успели "запомнить" при обучении.
RAG (Retrieval-Augmented Generation) ломает эту границу — модель получает доступ к внешним данным и способна подгружать нужные факты *в момент запроса*.
Механика проста, но мощна:
LLM → делает эмбеддинг запроса → ищет близкие документы в векторном хранилище → получает top-k контексты → формирует ответ на их основе.
В итоге модель не "вспоминает", а всегда рассуждает на свежих данных.
Где это реально работает:
- в Copilot для кода, когда модель тянет сниппеты из корпоративных репозиториев;
- в внутренних чатах компаний - поиск по Confluence, Notion, Jira и документации;
- в R&D и науке - динамическая генерация отчётов с ссылками на реальные статьи;
- в юридических и медтех-системах, где каждый ответ должен быть подтверждён источником.
RAG - это уже не просто “надстройка над GPT”.
Это новая архитектура, где память отделена от рассуждения, и ИИ получает навык работы с контекстом, как человек с поисковиком.
Видео: https://www.youtube.com/watch?v=WsXOUxFl4D8
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
Forwarded from Machinelearning
Он пишет: «То, с чем мы имеем дело, - это настоящее и загадочное существо, а не простая и предсказуемая машина».
Он сравнивает человечество 2025 года с ребёнком из старой истории: мы включаем свет в тёмной комнате и видим не груду одежды на стуле, а живые, мощные и во многом непредсказуемые существа — современные ИИ-системы и те, что ещё впереди.
Многие, по его словам, отчаянно хотят поверить, что это лишь иллюзия, что перед нами не новая форма разума, а просто набор инструментов для экономики. Некоторые даже тратят огромные деньги, чтобы убедить нас, будто «это не интеллект, готовящийся к стремительному взлёту, а всего лишь машина, которой мы управляем».
«Но не обманывайтесь, - пишет Кларк.Мы имеем дело с настоящим и загадочным существом, а не с простой и предсказуемой машиной».
Полное эссе
Благодаря этому обновлению инструмент теперь создаёт более выразительные и визуально насыщенные видео-саммари. Можно выбрать один из шести художественных стилей оформления - от акварели и бумажной аппликации до аниме, рисованной доски, ретро-печати и культурного оформления.
Кроме того, появились два формата генерации роликов: Explainer для подробных объяснений и Brief для коротких, лаконичных обзоров. Обновление уже начали получать владельцы Pro-подписки, а в ближайшее время функция станет доступна всем пользователям.
X
Ring-1T-FP8 - модель на архитектуре Ling 2.0, которая содержит 1 триллион параметров( 50 миллиардов активных).
Ring-1T обучалась с применением RLVR (reinforcement learning with verifiable rewards) - техники, направленной на повышение точности рассуждений и самопроверку ответов. В процессе использовались собственные методы ASystem и Icepop, уменьшающие разрыв между обучением и инференсом.
Модель решает задачи уровня математических олимпиад (IMO 2025), сохраняет контекст до 128 000 токенов, что вдвое больше предыдущей версии.
HF
При этом точность почти не теряется, а вычисления становятся в 2–3 раза быстрее, а потребление памяти снижается на 50%.
В эксперименте NVIDIA обучила 12-миллиардный Mamba Transformer на 10 триллионах токенов, и модель с 4-битным NVFP4 показала почти такую же точность, как и FP8:
на тесте MMLU Pro - 62.58% против 62.62%,
а по коду (MBPP+) - 55.91% против 59.11%.
NVFP4 группирует значения в блоки по 16 чисел. Для каждого блока хранится небольшой масштаб в 8 битах, а для всего тензора - глобальный масштаб в 32 битах. Такая структура сохраняет точность локальных и экстремальных значений, позволяя использовать сверхкомпактное 4-битное хранение без потери устойчивости обучения.
На GPU Blackwell операции FP4 выполняются в 2 раза быстрее на GB200 и в 3 раза 0 на GB300, по сравнению с FP8. Потери точности при валидации не превышают 1–1.5%.
Метод также использует стохастическое округление, чтобы избежать накопления ошибок, а переход на BF16 в последних итерациях обучения полностью убирает оставшуюся разницу.
Поддержка NVFP4 уже встроена в Transformer Engine и новое поколение GPU Blackwell.
arxiv
OpenAI будет отвечать за архитектуру и проектирование чипов, а Broadcom - за производство и развёртывание систем. Масштаб проекта колоссален: 10 ГВт — это примерно столько же энергии, сколько требуется, чтобы обеспечить электричеством 7–10 миллионов домов.
Главная цель - уменьшить зависимость от NVIDIA и создать собственную, независимую инфраструктуру.
OpenAi
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1
Media is too big
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡ LMMs-Engine ⚡ - это лёгкий, модульный и гибкий фреймворк для обучения унифицированных моделей, поддерживающих несколько типов данных (текст, изображение, звук и др.).
💡 Что делает:
- Работает с мультимодальными входами и выходами - от autoregressive и diffusion-моделей до гибридных архитектур.
- Поддерживает унифицированные модели вроде BAGEL, где разные типы данных обрабатываются одной сетью.
- Ориентирован на исследователей и инженеров, кому нужно быстро экспериментировать и масштабировать обучение.
- Простая структура кода — можно легко адаптировать под свои пайплайны и GPU-кластер.
Современные LMM (Large Multimodal Models) требуют единого подхода к данным. LMMs-Engine решает эту задачу - одна платформа для всего цикла: от прототипа до тренировки на уровне лаборатории.
Репозиторий: https://github.com/EvolvingLMMs-Lab/lmms-engine
💡 Что делает:
- Работает с мультимодальными входами и выходами - от autoregressive и diffusion-моделей до гибридных архитектур.
- Поддерживает унифицированные модели вроде BAGEL, где разные типы данных обрабатываются одной сетью.
- Ориентирован на исследователей и инженеров, кому нужно быстро экспериментировать и масштабировать обучение.
- Простая структура кода — можно легко адаптировать под свои пайплайны и GPU-кластер.
Современные LMM (Large Multimodal Models) требуют единого подхода к данным. LMMs-Engine решает эту задачу - одна платформа для всего цикла: от прототипа до тренировки на уровне лаборатории.
Репозиторий: https://github.com/EvolvingLMMs-Lab/lmms-engine
GitHub
GitHub - EvolvingLMMs-Lab/lmms-engine: A simple, unified multimodal models training engine. Lean, flexible, and built for hacking…
A simple, unified multimodal models training engine. Lean, flexible, and built for hacking at scale. - EvolvingLMMs-Lab/lmms-engine
❤1
Nvidia первой в мире достигла $5 трлн капитализации
Капитализация Nvidia превысила 5 триллионов долларов — это рекорд в истории. Компания растёт благодаря ажиотажу вокруг искусственного интеллекта и огромному спросу на её видеочипы.
Но аналитики предупреждают: рост может быть искусственным. Nvidia инвестирует в AI-компании, которые потом покупают её же оборудование. Получается замкнутый круг — деньги гоняются по кругу, а реального результата может и не быть.
Капитализация Nvidia превысила 5 триллионов долларов — это рекорд в истории. Компания растёт благодаря ажиотажу вокруг искусственного интеллекта и огромному спросу на её видеочипы.
Но аналитики предупреждают: рост может быть искусственным. Nvidia инвестирует в AI-компании, которые потом покупают её же оборудование. Получается замкнутый круг — деньги гоняются по кругу, а реального результата может и не быть.
👍1
📚 Курс, который прокачает твои AI-скиллы в BigQuery
Этот курс учит работать с Gemini прямо внутри BigQuery и закрывает полный набор практических навыков:
- генерация и отладка SQL-запросов с помощью Gemini
- анализ тональности текста
- автоматические суммари и выделение ключевых слов
- генерация эмбеддингов
- построение RAG-пайплайна
- мультимодальный векторный поиск
Если хочешь уверенно использовать AI-инструменты в аналитике и продуктах — этот курс даёт полный набор необходимых умений.
https://www.skills.google/paths/1803/course_templates/1232
Этот курс учит работать с Gemini прямо внутри BigQuery и закрывает полный набор практических навыков:
- генерация и отладка SQL-запросов с помощью Gemini
- анализ тональности текста
- автоматические суммари и выделение ключевых слов
- генерация эмбеддингов
- построение RAG-пайплайна
- мультимодальный векторный поиск
Если хочешь уверенно использовать AI-инструменты в аналитике и продуктах — этот курс даёт полный набор необходимых умений.
https://www.skills.google/paths/1803/course_templates/1232
❤3
⚡️ Бесплатный 7-часовой курс MIT по генеративному ИИ
MIT выложил полный интенсив по современным генмоделям — от LLM до диффузионных моделей. Разбирают архитектуры, принципы обучения, практические применения и ключевые идеи, которые лежат в основе сегодняшних систем.
Подойдёт тем, кто хочет быстро собрать цельную картину без воды.
Курс: https://www.youtube.com/playlist?list=PLXV9Vh2jYcjbnv67sXNDJiO8MWLA3ZJKR
MIT выложил полный интенсив по современным генмоделям — от LLM до диффузионных моделей. Разбирают архитектуры, принципы обучения, практические применения и ключевые идеи, которые лежат в основе сегодняшних систем.
Подойдёт тем, кто хочет быстро собрать цельную картину без воды.
Курс: https://www.youtube.com/playlist?list=PLXV9Vh2jYcjbnv67sXNDJiO8MWLA3ZJKR
❤1
🔥 Подборка полезных ресурсов для программистов.
Здесь ты найдёшь всё это - коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Devops: t.iss.one/DevOPSitsec
Собеседования DS: t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_1001_notes
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
Папка Linux:https://t.iss.one/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Сохрани себе, чтобы не потерять!
Здесь ты найдёшь всё это - коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Devops: t.iss.one/DevOPSitsec
Собеседования DS: t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_1001_notes
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
Папка Linux:https://t.iss.one/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Сохрани себе, чтобы не потерять!