Аналитик данных
6.07K subscribers
216 photos
28 videos
2 files
201 links
Аналитика данных, Дата Сеанс

@workakkk - по всем вопросам
Download Telegram
🔥 Reflex LLM Examples — это репозиторий, демонстрирующий практические примеры использования больших языковых моделей от таких провайдеров, как Google, Anthropic, OpenAI, а также open-source моделей для локального хостинга!

🌟 Эти примеры построены с использованием фреймворка Reflex, который позволяет разработчикам создавать полнофункциональные веб-приложения исключительно на языке Python, без необходимости в знаниях JavaScript или веб-разработки.

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
🔥 Большой плейлист по изучению Deep Learning от Катарского университета!

🔗 Ссылка: *клик*

#курс #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
2
Forwarded from Machinelearning
🌟 MoBA: Метод эффективной обработки длинных контекстов в LLM.

Mixture of Block Attention (MoBA) - метод, разработанный MoonshotAI для повышения эффективности обработки длинных последовательностей в LLM. MoBA основан на принципах Mixture of Experts и применяется к механизму внимания в архитектуре Transformers. Он позволяет динамически выбирать исторически релевантные KV-блоки для каждого токена запроса, снижая, как следствие, вычислительные затраты при обработке длинных контекстов.

MoBA разделяет контекст на блоки и использует механизм маршрутизации для выбора наиболее релевантных блоков. Такая конструкция помогает адаптивно фокусироваться на информативных частях контекста, что полезно для задач, требующих обработки длинных документов. Метод сохраняет причинность (causality) в авторегрессионных моделях за счет ограничения внимания только текущими и прошлыми блоками.

MoBA обладает гибкостью: модель может переключаться между полным и разреженным вниманием, экономя ресурсы при обучении моделей с длинными контекстами.

Эксперименты показали, что MoBA имеет сопоставимую производительность с Full attention при значительно меньших вычислительных затратах. Например, на Llama-8B-1M-MoBA с длиной контекста до 1 млн. токенов MoBA достигает разреженности до 95.31%, при этом сохраняя высокую точность на бенчмарках (AGIEval, BBH, CEval и др.).

На тестах с RULER с длиной контекста 128K MoBA показал результат 0.7818, что близко к результату полного внимания (0.7849).

⚠️ Актуальная реализация ядра полагается на flash-attn= =2.6.3. Данная реализация MoBA полностью совместима с transformers. Выбор бекэнда выполняется параметрами --attn moba и --attn moba_naive

▶️Локальная установка и запуск:

# Clone the repository
git clone https://github.com/MoonshotAI/MoBA.git

# Create a Conda venv
conda create -n moba python=3.10
conda activate moba

# Install dependencies
pip install .

# Quick Start
python3 examples/llama.py --model meta-llama/Llama-3.1-8B --attn moba

# Unit Tests
pytest tests/test_moba_attn.py


📌Лицензирование: MIT License.


🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MoBA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
Forwarded from Machinelearning
🌟 olmOCR: инструмент для обработки PDF-документов.

olmOCR — проект, созданный для преобразования PDF-файлов и изображений документов в структурированный текст Markdown формата. Он способен справляться с уравнениями, таблицами и рукописным текстом, сохраняя правильный порядок чтения даже в самых сложных многоколоночных макетах.

olmOCR обучен эвристическим признакам для обработки распространенных ошибок парсинга и метаданных и поддерживает работу в SGLang и vLLM, где может масштабироваться одного до сотен GPU, что что делает его уникальным решением для крупномасштабных задач.

Ключевое преимущество olmOCR - его экономическая эффективность. Обработка 1 млн. страниц PDF обойдется всего в $190 (при аренде GPU), что составляет примерно 1/32 от стоимости использования API GPT-4o для того же объема.

Команда разработки создала уникальный метод «document anchoring» чтобы улучшить качество извлеченного текста. Он использует текст и метаданные из PDF-файлов для повышения точности обработки. Области изображений и текстовые блоки извлекаются, конкатенируются и вставляются в промпт модели. Когда VLM запрашивает обычную текстовую версию документа, "привязанный" текст используется вместе с растрированным изображением страницы.

В тестах olmOCR показал высокие результаты по сравнению с Marker, MinerU и GOT-OCR 2.0. В ходе тестирования olmOCR был предпочтен в 61,3% случаев против Marker, в 58,6% — против GOT-OCR и в 71,4% — против MinerU.

▶️Релиз olmOCR:

🟢Модель olmOCR-7B-0225-preview - дообученная Qwen2-VL-7B-Instruct на датасете olmOCR-mix-0225;

🟢Датасет olmOCR-mix-0225 - более 250 тыс. страниц цифровых книг и документов из публичного доступа, распознанные с помощью gpt-4o-2024-08-06 и специальной стратегия промптов, которая сохраняет все цифровое содержимое каждой страницы.

🟢Набор кода для инференса и обучения.


▶️Рекомендованная среда для инференса:

🟠NVIDIA GPU (RTX 4090 и выше)
🟠30 GB свободного пространства на SSD \ HDD
🟠установленный пакет poppler-utils
🟠sglang с flashinfer для GPU-инференса

▶️Локальная установка и запуск:

# Install dependencies
sudo apt-get update
sudo apt-get install poppler-utils ttf-mscorefonts-installer msttcorefonts fonts-crosextra-caladea fonts-crosextra-carlito gsfonts lcdf-typetools

# Set up a conda env
conda create -n olmocr python=3.11
conda activate olmocr

git clone https://github.com/allenai/olmocr.git
cd olmocr
pip install -e .

# Convert a Single PDF
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/test.pdf

# Convert Multiple PDFs
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/*.pdf


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Demo
🟡Модель
🟡Arxiv
🟡Сообщество в Discord
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #OCR #Olmocr
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ Gemma 3 — свежий релиз, который значительно расширяет возможности открытых моделей и упрощает их развёртывание:

🟢 27B модель: Достигла рейтинга ELO 1338 и при этом умещается на одном H100.
🟢 Поддержка vision: Теперь модель способна обрабатывать смешанный контент, включая изображения, видео и текст.
🟢Доступны версии на 1В, 4В, 12В, 27В в базовых и instruct версиях
🟢 Расширенное окно контекста: Модель может работать с контекстом до 128k токенов
🟢 Широкая языковая поддержка: Поддерживается 140 языков
🟢 Встроенные возможности для реализации агентных сценариев и интеграции с внешними инструментами.

Попробуйте модель по ссылке: Gemma 3 27B.

🟡Пост: https://blog.google/technology/developers/gemma-3/

🟡Попробовать: aistudio.google.com/prompts/new_chat?model=gemma3-27b

🟡Tech report: https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf

🟡Видео https://youtube.com/watch?v=UU13FN2Xpyw

🟡HF: https://huggingface.co/blog/gemma3

@ai_machinelearning_big_data

#gemma #ai #ml #release #google #
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 tbls

Мощный инструмент для документирования баз данных. Он анализирует структуру базы данных и автоматически генерирует красивую документацию в формате Markdown, HTML, JSON и других.

🔹 Основные возможности:
- Автоматический разбор схемы базы данных.
- Поддержка множества СУБД (PostgreSQL, MySQL, SQLite, MSSQL и др.).
- Генерация наглядных диаграмм и связей между таблицами.
- Возможность кастомизации документации.
- Интеграция с CI/CD для автоматического обновления документации.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61
Визуализация пакетов PyPi — новый способ поиска библиотек

Если вы разрабатываете на Python, то наверняка используете PyPi. Мы нашли интересную визуализацию пакетов, которая делает процесс их изучения и поиска более удобным и наглядным.

Графическая карта пакетов
Удобный поиск и исследование зависимостей
Возможность находить новые полезные библиотеки

📂 Исходный код и инструкции для воспроизведения тоже доступны.

https://fi-le.net/pypi/
👍61
Forwarded from Machinelearning
🧍 LHM: новая модель Alibaba для генерации 3D из единственного изображения.

Этот ИИ может превратить ЛЮБОЕ изображение в полный рост в анимированных 3D-персонажей за считанные секунды.

🟢Основные моменты работы модели:
Выделение признаков: Из входного изображения извлекаются токены, описывающие как общую структуру тела, так и детали лица (с помощью схемы многоуровневого кодирования для головы).

🟢Мультимодальный трансформер: С помощью архитектуры трансформера происходит объединение 3D-геометрических токенов тела с визуальными токенами изображения. Механизм внимания позволяет сохранять геометрию одежды и текстурные детали.

🟢Декодирование в 3D: После слияния токенов модель быстро (в режиме feed-forward) декодирует их в параметры 3D-гaуссового распределения, которые задают форму и внешний вид анимируемого 3D-аватара.


⚡️ Модель выдает очень приличные генерации, видео выглядит плавно и естественно, особенно анимация лица и рук.

Установка:
git clone [email protected]:aigc3d/LHM.git
cd LHM


📌Лицензирование: Apache 2.0 License.

🟡Github
🟡Проект
🟡Демка (периодически отваливается из-за наплыва пользователей)
🟡Статья
🟡Видео

@ai_machinelearning_big_data


#ml #opensource #3dgenerator #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥2