Forwarded from Machinelearning
Alibaba релизнули еще одну модель: Qwen2.5-Max
- MoE
- предварительно обученная на масштабных датасетах и пост-обученная с помощью SFT и RLHF
- превосходит DeepSeek V3 на бенчмарках: Arena Hard, LiveBench, LiveCodeBench, GPQA-Diamond
- Может генерить видео, картинки, поддерживает поиск в интернете.
📖 Релиз: https://qwenlm.github.io/blog/qwen2.5-max/
💬 Chat: https://chat.qwenlm.ai (choose Qwen2.5-Max as the model)
⚙️ API: https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE
🤗 HF: https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo
#Qwen #ml #llm #Alibaba #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
#deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥3
Forwarded from Machinelearning
Oumi - открытая платформа для разработки, файнтюна, оценки и экспериментов с языковыми и мультимодальными моделями, созданная совместными усилиями исследователей из 13 ведущих университетов.
Oumi предоставляет инструменты и рабочие процессы для разработки и запуска масштабных экспериментов на кластере, развертывания моделей в рабочей среде и поддерживает методы распределенного обучения (FSDP, DDP):
В репозитории проекта собраны готовые ноутбуки и скрипты для каждого из этапов жизненного цикла моделей, а подробная документация по использованию поможет легко освоить эту платформу.
@ai_machinelearning_big_data
#AI #ML #Oumi #Framework
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
#курс #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Forwarded from Machinelearning
Mixture of Block Attention (MoBA) - метод, разработанный MoonshotAI для повышения эффективности обработки длинных последовательностей в LLM. MoBA основан на принципах Mixture of Experts и применяется к механизму внимания в архитектуре Transformers. Он позволяет динамически выбирать исторически релевантные KV-блоки для каждого токена запроса, снижая, как следствие, вычислительные затраты при обработке длинных контекстов.
MoBA разделяет контекст на блоки и использует механизм маршрутизации для выбора наиболее релевантных блоков. Такая конструкция помогает адаптивно фокусироваться на информативных частях контекста, что полезно для задач, требующих обработки длинных документов. Метод сохраняет причинность (causality) в авторегрессионных моделях за счет ограничения внимания только текущими и прошлыми блоками.
MoBA обладает гибкостью: модель может переключаться между полным и разреженным вниманием, экономя ресурсы при обучении моделей с длинными контекстами.
Эксперименты показали, что MoBA имеет сопоставимую производительность с Full attention при значительно меньших вычислительных затратах. Например, на Llama-8B-1M-MoBA с длиной контекста до 1 млн. токенов MoBA достигает разреженности до 95.31%, при этом сохраняя высокую точность на бенчмарках (AGIEval, BBH, CEval и др.).
На тестах с RULER с длиной контекста 128K MoBA показал результат 0.7818, что близко к результату полного внимания (0.7849).
⚠️ Актуальная реализация ядра полагается на
flash-attn= =2.6.3. Данная реализация MoBA полностью совместима с transformers. Выбор бекэнда выполняется параметрами --attn moba и --attn moba_naive# Clone the repository
git clone https://github.com/MoonshotAI/MoBA.git
# Create a Conda venv
conda create -n moba python=3.10
conda activate moba
# Install dependencies
pip install .
# Quick Start
python3 examples/llama.py --model meta-llama/Llama-3.1-8B --attn moba
# Unit Tests
pytest tests/test_moba_attn.py
@ai_machinelearning_big_data
#AI #ML #LLM #MoBA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
Forwarded from Machinelearning
olmOCR — проект, созданный для преобразования PDF-файлов и изображений документов в структурированный текст Markdown формата. Он способен справляться с уравнениями, таблицами и рукописным текстом, сохраняя правильный порядок чтения даже в самых сложных многоколоночных макетах.
olmOCR обучен эвристическим признакам для обработки распространенных ошибок парсинга и метаданных и поддерживает работу в SGLang и vLLM, где может масштабироваться одного до сотен GPU, что что делает его уникальным решением для крупномасштабных задач.
Ключевое преимущество olmOCR - его экономическая эффективность. Обработка 1 млн. страниц PDF обойдется всего в $190 (при аренде GPU), что составляет примерно 1/32 от стоимости использования API GPT-4o для того же объема.
Команда разработки создала уникальный метод «document anchoring» чтобы улучшить качество извлеченного текста. Он использует текст и метаданные из PDF-файлов для повышения точности обработки. Области изображений и текстовые блоки извлекаются, конкатенируются и вставляются в промпт модели. Когда VLM запрашивает обычную текстовую версию документа, "привязанный" текст используется вместе с растрированным изображением страницы.
В тестах olmOCR показал высокие результаты по сравнению с Marker, MinerU и GOT-OCR 2.0. В ходе тестирования olmOCR был предпочтен в 61,3% случаев против Marker, в 58,6% — против GOT-OCR и в 71,4% — против MinerU.
poppler-utilssglang с flashinfer для GPU-инференса# Install dependencies
sudo apt-get update
sudo apt-get install poppler-utils ttf-mscorefonts-installer msttcorefonts fonts-crosextra-caladea fonts-crosextra-carlito gsfonts lcdf-typetools
# Set up a conda env
conda create -n olmocr python=3.11
conda activate olmocr
git clone https://github.com/allenai/olmocr.git
cd olmocr
pip install -e .
# Convert a Single PDF
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/test.pdf
# Convert Multiple PDFs
python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/*.pdf
@ai_machinelearning_big_data
#AI #ML #LLM #OCR #Olmocr
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Попробуйте модель по ссылке: Gemma 3 27B.
@ai_machinelearning_big_data
#gemma #ai #ml #release #google #
Please open Telegram to view this post
VIEW IN TELEGRAM
Мощный инструмент для документирования баз данных. Он анализирует структуру базы данных и автоматически генерирует красивую документацию в формате Markdown, HTML, JSON и других.
🔹 Основные возможности:
- Автоматический разбор схемы базы данных.
- Поддержка множества СУБД (PostgreSQL, MySQL, SQLite, MSSQL и др.).
- Генерация наглядных диаграмм и связей между таблицами.
- Возможность кастомизации документации.
- Интеграция с CI/CD для автоматического обновления документации.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤1
Визуализация пакетов PyPi — новый способ поиска библиотек
Если вы разрабатываете на Python, то наверняка используете PyPi. Мы нашли интересную визуализацию пакетов, которая делает процесс их изучения и поиска более удобным и наглядным.
✅ Графическая карта пакетов
✅ Удобный поиск и исследование зависимостей
✅ Возможность находить новые полезные библиотеки
📂 Исходный код и инструкции для воспроизведения тоже доступны.
https://fi-le.net/pypi/
Если вы разрабатываете на Python, то наверняка используете PyPi. Мы нашли интересную визуализацию пакетов, которая делает процесс их изучения и поиска более удобным и наглядным.
✅ Графическая карта пакетов
✅ Удобный поиск и исследование зависимостей
✅ Возможность находить новые полезные библиотеки
📂 Исходный код и инструкции для воспроизведения тоже доступны.
https://fi-le.net/pypi/
fi-le.net
fi-le.net, the Fiefdom of Files
👍6❤1