Human Refiner может улучшить качество изображений рук и конечностей человека!
Этот метод позволяет выявлять и исправлять проблемы, связанные с неправильными позами человека.
https://github.com/Enderfga/HumanRefiner
Аналитика данных
Этот метод позволяет выявлять и исправлять проблемы, связанные с неправильными позами человека.
https://github.com/Enderfga/HumanRefiner
Аналитика данных
👍2🔥2
Специалисты «Яндекса» сократили расходы на внедрение нейросетей до восьми раз! 🚀
Yandex Research совместно с IST Austria и Kaust разработали методы сжатия больших языковых моделей, позволяющие запускать их на менее мощных устройствах без потери качества. Новые инструменты сокращают необходимые вычислительные ресурсы, сохраняя в среднем 95% качества ответов. Это делает внедрение и обслуживание ИИ дешевле для бизнеса.
Код и обучающие материалы доступны на GitHub. 📉💡
Аналитика данных
#ml #yandex #machinelearning #big_data #python #ai
Yandex Research совместно с IST Austria и Kaust разработали методы сжатия больших языковых моделей, позволяющие запускать их на менее мощных устройствах без потери качества. Новые инструменты сокращают необходимые вычислительные ресурсы, сохраняя в среднем 95% качества ответов. Это делает внедрение и обслуживание ИИ дешевле для бизнеса.
Код и обучающие материалы доступны на GitHub. 📉💡
Аналитика данных
#ml #yandex #machinelearning #big_data #python #ai
👍7❤2🔥1
Forwarded from Machinelearning
Zamba2-2.7B - это гибридная модель, состоящая из блоков пространства состояний (state-space) и трансформеров. Она сохраняет качество инференса модели 3-4В плотности, требуя при этом вычислительных ресурсов на уровне модели плотностью 1-2B.
Такие характеристики были получены за счет использования блоков Mamba2, чередования блоков внимания в схеме "А-В-А-В" и применения LoRA projector для каждого общего MLP-блока.
Zamba2-2.7B использует токенизатор Mistral v0.1 и была предварительно обучена на 3T токенов текста и кода, полученных из открытых источников, включая датасет Zyda.
По завершению обучения, модель была подвергнута дополнительной фазе агрессивного снижения скорости обучения на смеси из 100B высококачественных токенов.
Согласно заверению создателей, Zamba2-2.7B достигает лучших результатов среди моделей аналогичного масштаба, таких как Gemma2-2.7B, StableLM-3B, OpenELM-3B и Phi2-2.7B.
⚠️ Внимание:
Эксплуатация модели доступна с использованием Zyphra's fork of transformers или с помощью кода из репозитория разработчиков модели.
# Сlone and install
git clone https://github.com/Zyphra/Zamba2.git
cd Zamba2
pip install -e
# Install core mamba dependencies
pip install -U mamba-ssm causal-conv1d
# Inference
from mamba_model import MambaModel
from mamba_config import MambaConfig
import torch
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B")
input_text = 'A funny prompt would be '
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")["input_ids"].transpose(0,1)
model = MambaModel.from_pretrained(model_name = "Zyphra/Zamba2-2.7B").cuda().half()
tokens_to_generate = 20
model.eval()
with torch.no_grad():
for _ in range(tokens_to_generate):
out = model(input_ids)
out_last = out[:, -1]
idx = torch.argmax(out_last)[None, None]
input_ids = torch.cat((input_ids, idx), dim=0)
input_ids = input_ids.transpose(0, 1)[0]
print(repr(tokenizer.decode(input_ids.cpu().numpy().tolist())))
@ai_machinelearning_big_data
#AI #ML #SLM #Mamba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2⚡1
Forwarded from Machinelearning
Black Forest Labs, компания, основанная командой разработки, покинувшей SatbilityAI (Stable Diffusion) опубликовала пресс-релиз с презентаций своего семейства GenAI моделей FLUX версии 1.
Представленное семейство FLUX.1 определяет новый уровень детализации изображения, точного следования промпту, разнообразия стилей и сложности сцен для синтеза текста в изображение.
Каждая вариация семейства FLUX.1 поддерживают популярные соотношения сторон и разрешения от 0,1 (128х) до 2,0(2048х) мегапикселя.
FLUX.1 выпускается в трех вариантах: FLUX.1 pro, FLUX.1 dev и FLUX.1 schnell:
Код инференса можно найти на Github проекта или использовать поддержку модели в ComfyUI.
Все модели FLUX.1 основаны на гибридной архитектуре мультимодальных и параллельных блоков трансформеров диффузии и масштабированы до 12B параметров.
Улучшения предыдущих диффузионных моделей проведено за счет использования согласования потоков - концептуально простого метода обучения, который включает диффузию как частный случай.
Повышение производительности модели и эффективность использования аппаратного обеспечения получено за счет использования rotary positional embeddings и параллельных слоев внимания.
Более подробный технический отчет разработчики обещают опубликовать в ближайшем будущем.
Локальный запуск с автозагрузкой моделей dev и schell с выводом cli или с UI Streamlit:
# Clone repo and install dependences
cd $HOME && git clone https://github.com/black-forest-labs/flux
cd $HOME/flux
python3.10 -m venv .venv
source .venv/bin/activate
pip install -e '.[all]'
# Download dev or schnell automatically via HuggingFace you will need to be logged in HF
# For manual downloaded models you can specify the paths via environment-variables:
export FLUX_SCHNELL=<path_to_flux_schnell_sft_file>
export FLUX_DEV=<path_to_flux_dev_sft_file>
export AE=<path_to_ae_sft_file>
# For cli interactive sampling run
python -m flux --name <name> --loop
# Or to generate a single sample run
python -m flux --name <name> \
--height <height> --width <width> \
--prompt "<prompt>"
# streamlit demo that does both text-to-image and image-to-image
streamlit run demo_st.py
@ai_machinelearning_big_data
#AI #FLUX #Diffusers #Text2Image #Image2Image #GenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥3
Forwarded from Machinelearning
InternLM2.5-20B-chat - базовая модель с 20 миллиардами параметров ориентированная на чат-взаимодействие. Модель обладает математическими возможностями, поддерживает сбор информации с веб-страниц и получила улучшенный навык следования инструкциям.
Модель может быть развернута с помощью Transformers, vLLM и LMDeploy.
Доступна также версии GGUF для запуска в llama.cpp, LMStudio и Ollama с половинной точностью FP16 (39.7GB) и в малоразрядных квантованных вариациях c шагом в 1 bit : от 2-bit (7.55 GB) до 8-bit (21 GB).
InternLM2.5-1.8B-chat - модель с 1.8 миллиардами параметров и точно такой же направленности и возможностями, как и 20B-chat версия.
Для InternLM2.5-1.8B-chat тоже доступны GGUF версии с разрядностью от FP16 (3.78 GB) до до 2-bit (772 Mb), с шагом в 1 bit.
@ai_machinelearning_big_data
#AI #LLM #ML #InternLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2🔥2
🚀 NVIDIA Llama 3.1 Minitron 4B создана на основе Llama 3.1 8B.
- В 40 раз меньше токенов
- В 1,8 раза меньше затрат
- На 16% выше производительность
- 4 миллиарда параметров
⚖️ работает наравне с моделями 8B
✅ Обрезка и дистилляция
✅ Создание эффективной модели искусственного интеллекта
✅ Требуется меньше данных для обучения
https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
- В 40 раз меньше токенов
- В 1,8 раза меньше затрат
- На 16% выше производительность
- 4 миллиарда параметров
⚖️ работает наравне с моделями 8B
✅ Обрезка и дистилляция
✅ Создание эффективной модели искусственного интеллекта
✅ Требуется меньше данных для обучения
https://developer.nvidia.com/blog/how-to-prune-and-distill-llama-3-1-8b-to-an-nvidia-llama-3-1-minitron-4b-model/
NVIDIA Technical Blog
How to Prune and Distill Llama-3.1 8B to an NVIDIA Llama-3.1-Minitron 4B Model
Large language models (LLM) are now a dominant force in natural language processing and understanding, thanks to their effectiveness and versatility. LLMs such as Llama 3.1 405B and NVIDIA Nemotron-4…
👍4❤2🔥2
Искусственный интеллект / Машинное обучение
Предсказываем цены на квартиры // Машинное обучение
Предсказываем кто Выжил на Титанике // Машинное обучение. Питон.
Строим Нейронную Сеть для Распознавания Изображений за 20 минут
Различие между Искусственным Интеллектом, Машинным обучением и Глубоким обучением
Искусственный Интеллект: История развития
#video
https://www.youtube.com/playlist?list=PL2bxgPsd_Jd5E_fxEje1OIr8b6EKFY_JV
Предсказываем цены на квартиры // Машинное обучение
Предсказываем кто Выжил на Титанике // Машинное обучение. Питон.
Строим Нейронную Сеть для Распознавания Изображений за 20 минут
Различие между Искусственным Интеллектом, Машинным обучением и Глубоким обучением
Искусственный Интеллект: История развития
#video
https://www.youtube.com/playlist?list=PL2bxgPsd_Jd5E_fxEje1OIr8b6EKFY_JV
👍4❤3🔥2
Forwarded from Machinelearning
Llama-3.1-Storm-8B - инструктивная модель, сочетающая в себе баланс размера и производительности, ориентированная на использование в приложениях и сервисах, генерацию текста, вызов функций и чат-ботов.
Модель обучалась на 1 миллионе высококачественных образцах из большого датасета (2.8M), отобранных вручную. Образцы оценивались на основе образовательной ценности и уровня сложности, чтобы модель могла получить релевантные и сложные данные в качестве тренировочной базы.
Полученный набор данных использовался для контролируемого файнтюна базовой Llama-3.1-8B-Instruct c применением методологии SPECTRUM. В завершении, полученная модель была объединена с моделью Llama-Spark методом сферической линейной интерполяции SLERP.
Локальный запуск Llama-3.1-Storm-8B поддерживается в Transformers, vLLM и LitGPT.
You are a function calling AI model.
You may call one or more functions to assist with the user query.
Don't make assumptions about what values to plug into function.
The user may use the terms function calling or tool use interchangeably.
Here are the available functions:
<tools>LIST_OF_TOOLS</tools>
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags in the format:
<tool_call>{"tool_name": <function-name>, "tool_arguments": <args-dict>}</tool_call>
⚡️Лицензирование : Llama 3.1 Community License
▪Demo
▪Набор моделей
▪Google Collab (инференс)
@ai_machinelearning_big_data
#AI #Llama #LLM #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2🔥2💩1
Forwarded from Machinelearning
Liger (Linkedin GPU Efficient Runtime) Kernel — набор оптимизированных ядер Triton, применение которых в задачах обучения LLM на нескольких GPU повышает производительность на 20 % и снижает потребление VRAM на 60%. Это дает возможность использовать более длинные контексты, более крупные размеры пакетов и увеличенные словари в обучении.
Liger предоставляет простой API для операций с оптимизированными ядрами и совместим с Hugging Face: RMSNorm, RoPE, SwiGLU, CrossEntropy, FusedLinearCrossEntropy
Liger работает с Flash Attention, PyTorch FSDP и Microsoft DeepSpeed без необходимости дополнительной настройки.
Зависимости:
Liger Kernel доступен в pip. Выберите стабильную версию для продакшена или nightly c последними новыми функциями и исправлениями:
# Stable version
pip install liger-kernel
# Nightly version
pip install liger-kernel-nightly
Патч существующей модели с Hugging Face:
# Import modules
import transformers
from liger_kernel.transformers import apply_liger_kernel_to_llama
# Load Hugging Face model:
model = transformers.AutoModelForCausalLM.from_pretrained("<some llama model>")
# Apply Liger Kernel patches:
apply_liger_kernel_to_llama(model)
После установки патча, модель будет использовать операции ядра Liger для поддерживаемых слоев, что приведет к повышению производительности и снижению потребления VRAM.
Если вы хотите построить собственные модели с помощью Liger Kernel, вы можете импортировать отдельные модули ядра и использовать их в качестве строительных блоков. Например:
# Import the Liger Kernel module:
from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss
#Create your model:
import torch.nn as nn
import torch
model = nn.Linear(128, 256).cuda()
loss_fn = LigerFusedLinearCrossEntropyLoss()
#Use the model:
input = torch.randn(4, 128, requires_grad=True, device="cuda")
target = torch.randint(256, (4, ), device="cuda")
loss = loss_fn(model.weight, input, target)
loss.backward()
Модель пропатчена, вы можете продолжить обучение как обычно. Liger Kernel будет автоматически выполнять оптимизированные операции во время обучения.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
Познакомьтесь с ключевыми концепциями и алгоритмами, лежащими в основе глубокого обучения, начав с самого простого структурного блока.
Please open Telegram to view this post
VIEW IN TELEGRAM
Toptal
A Deep Learning Tutorial: From Perceptrons to Deep Networks
Are you joining the growing group of developers who want to know more about Deep Learning? This introductory tutorial covers it all.
👍2❤1