#FLANN is a library for performing fast approximate nearest neighbor
searches in high dimensional spaces. It contains a collection of algorithms we found to work best for #nearest_neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset. FLANN is written in C++ and contains bindings for the following languages: C, MATLAB, #Python, and Ruby
code: https://github.com/mariusmuja/flann
project page: https://www.cs.ubc.ca/research/flann/
paper: https://github.com/mariusmuja/flann (2009)
searches in high dimensional spaces. It contains a collection of algorithms we found to work best for #nearest_neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset. FLANN is written in C++ and contains bindings for the following languages: C, MATLAB, #Python, and Ruby
code: https://github.com/mariusmuja/flann
project page: https://www.cs.ubc.ca/research/flann/
paper: https://github.com/mariusmuja/flann (2009)
GitHub
GitHub - flann-lib/flann: Fast Library for Approximate Nearest Neighbors
Fast Library for Approximate Nearest Neighbors. Contribute to flann-lib/flann development by creating an account on GitHub.
#خبر
امروز به صورت همزمان هم (پیش نمایش) نسخه 1 فریمورک #پایتورچ و هم نسخه 1 کتابخانه یادگیری عمیق سطح بالای fastai (که بر روی پایتورچ نسخه 1 نوشته شده است) منتشر شدند.
کتابخانه :fastai
https://github.com/fastai/fastai
مستندات کتابخانه fastai هم بعد از مدت ها بالاخره منتشر شد.
https://docs.fast.ai
امروز به صورت همزمان هم (پیش نمایش) نسخه 1 فریمورک #پایتورچ و هم نسخه 1 کتابخانه یادگیری عمیق سطح بالای fastai (که بر روی پایتورچ نسخه 1 نوشته شده است) منتشر شدند.
کتابخانه :fastai
https://github.com/fastai/fastai
مستندات کتابخانه fastai هم بعد از مدت ها بالاخره منتشر شد.
https://docs.fast.ai
GitHub
GitHub - fastai/fastai: The fastai deep learning library
The fastai deep learning library. Contribute to fastai/fastai development by creating an account on GitHub.
#خبر #framework
توصیه ی Andrej Karpathy برای استفاده از فریم ورک FastAI و خوشحالی شدید Jeremy Howard ...
https://twitter.com/jeremyphoward/status/1047215781023367168
توصیه ی Andrej Karpathy برای استفاده از فریم ورک FastAI و خوشحالی شدید Jeremy Howard ...
https://twitter.com/jeremyphoward/status/1047215781023367168
#خبر
Introducing #PyTorch across Google Cloud
PyTorch 1.0 Preview is now available on Google Cloud, in virtual machine images, #Kubeflow, #Tensorboard, and on TPUs.
https://cloud.google.com/blog/products/ai-machine-learning/introducing-pytorch-across-google-cloud
Introducing #PyTorch across Google Cloud
PyTorch 1.0 Preview is now available on Google Cloud, in virtual machine images, #Kubeflow, #Tensorboard, and on TPUs.
https://cloud.google.com/blog/products/ai-machine-learning/introducing-pytorch-across-google-cloud
معرفی kuberflow برای serve کردن مدلهای PyTorch برای deployment
#Kubeflow is an open source platform designed to make end-to-end ML pipelines easy to deploy and manage. Kubeflow already supports #PyTorch, and the Kubeflow community has already developed a PyTorch package that can be installed in a Kubeflow #deployment with just two commands. Additionally, in collaboration with #NVIDIA, we have extended the #TensorRT package in Kubeflow to support #serving PyTorch models. We aim for Kubeflow to be the easiest way to build portable, scalable and composable PyTorch pipelines that #run_everywhere.
https://www.kubeflow.org/
#Kubeflow is an open source platform designed to make end-to-end ML pipelines easy to deploy and manage. Kubeflow already supports #PyTorch, and the Kubeflow community has already developed a PyTorch package that can be installed in a Kubeflow #deployment with just two commands. Additionally, in collaboration with #NVIDIA, we have extended the #TensorRT package in Kubeflow to support #serving PyTorch models. We aim for Kubeflow to be the easiest way to build portable, scalable and composable PyTorch pipelines that #run_everywhere.
https://www.kubeflow.org/
#خبر
#نصب راحت تر نسخه GPU تنسرفلو با Anaconda
اکنون آناکوندا کتابخانه های مورد نیاز CUDA و CuDNN را به عنوان پیش نیاز های مورد نیاز تنسرفلو نسخه GPU نصب میکند از این پس نیازی به نصب دستی این پیش نیازها نخواهد بود.
Anaconda now packages CUDA and cuDNN libraries as dependencies of tensorflow-gpu, so you no longer have to install these libs manually.
#tensorflow
#نصب راحت تر نسخه GPU تنسرفلو با Anaconda
اکنون آناکوندا کتابخانه های مورد نیاز CUDA و CuDNN را به عنوان پیش نیاز های مورد نیاز تنسرفلو نسخه GPU نصب میکند از این پس نیازی به نصب دستی این پیش نیازها نخواهد بود.
Anaconda now packages CUDA and cuDNN libraries as dependencies of tensorflow-gpu, so you no longer have to install these libs manually.
#tensorflow
Anaconda
Anaconda | TensorFlow in Anaconda
TensorFlow is a Python library for high-performance numerical calculations that allows users to create sophisticated deep learning and machine learning applications. Released as open source software…
Forwarded from Deleted Account
Ng-MLY01-13.pdf
4 MB
Forwarded from Deep learning channel (Alister☄)
در حال حاضرخلاصه راهنمای یادگیری ماشین،به زبان فارسی در دسترس است.
یادگیری عمیق:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-deep-learning
نکات و ترفندهای یادگیری ماشین:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
یاگیری با نظارت:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-supervised-learning
یادگیری بدون نظارت:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-unsupervised-learning
یادآوری آمار و احتمالات
https://stanford.edu/~shervine/l/fa/teaching/cs-229/refresher-probabilities-statistics
یادآوری جبر خطی و حسابان
https://stanford.edu/~shervine/l/fa/teaching/cs-229/refresher-algebra-calculus
یادگیری عمیق:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-deep-learning
نکات و ترفندهای یادگیری ماشین:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
یاگیری با نظارت:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-supervised-learning
یادگیری بدون نظارت:
https://stanford.edu/~shervine/l/fa/teaching/cs-229/cheatsheet-unsupervised-learning
یادآوری آمار و احتمالات
https://stanford.edu/~shervine/l/fa/teaching/cs-229/refresher-probabilities-statistics
یادآوری جبر خطی و حسابان
https://stanford.edu/~shervine/l/fa/teaching/cs-229/refresher-algebra-calculus
stanford.edu
CS ۲۲۹ - راهنمای کوتاه یادگیری عمیق
Teaching page of Shervine Amidi, Graduate Student at Stanford University.
#مقاله #آموزش
توئیت جالب Jeremy Howard در مورد #transfer_learning
در این کار لایه های FC اضافه شده freeze شدند و لایه های pre-trained شده fine-tuned شده اند!!
https://bit.ly/2yelykx
توئیت جالب Jeremy Howard در مورد #transfer_learning
در این کار لایه های FC اضافه شده freeze شدند و لایه های pre-trained شده fine-tuned شده اند!!
https://bit.ly/2yelykx
دوره مقدماتی یادگیری ژرف
https://plan.azad.ac.ir/fa/page/9755
سرفصل دوره مقدماتی و پیشرفته:
https://t.iss.one/cvision/737
https://plan.azad.ac.ir/fa/page/9755
سرفصل دوره مقدماتی و پیشرفته:
https://t.iss.one/cvision/737
sarfasl.pdf
551.5 KB
سرفصل دوره مقدماتی و پیشرفته در دانشگاه آزاد - تهران جنوب
دوره دوم یادگیری ژرف
https://plan.azad.ac.ir/fa/page/9756
سرفصل دوره مقدماتی و پیشرفته:
https://t.iss.one/cvision/737
https://plan.azad.ac.ir/fa/page/9756
سرفصل دوره مقدماتی و پیشرفته:
https://t.iss.one/cvision/737
Practical Text Classification With Python and Keras
https://realpython.com/python-keras-text-classification/
#keras #nlp
https://realpython.com/python-keras-text-classification/
#keras #nlp
Realpython
Practical Text Classification With Python and Keras – Real Python
Learn about Python text classification with Keras. Work your way from a bag-of-words model with logistic regression to more advanced methods leading to convolutional neural networks. See why word embeddings are useful and how you can use pretrained word embeddings.…
#آموزش #ویدیو
TensorFlow session recordings from O’Reilly AI Conference San Francisco 2018
https://medium.com/tensorflow/tensorflow-session-recordings-from-oreilly-ai-conference-san-francisco-2018-a8910277b449
#tensorflow
TensorFlow session recordings from O’Reilly AI Conference San Francisco 2018
https://medium.com/tensorflow/tensorflow-session-recordings-from-oreilly-ai-conference-san-francisco-2018-a8910277b449
#tensorflow
Medium
TensorFlow session recordings from O’Reilly AI Conference San Francisco 2018
By Marcus Chang, Developer Relations Program Manager
نقاشی کشیده شده با هوش مصنوعی، در یک حراجی 432 هزار دلار فروخته شد!
Portrait by AI program sells for $432,000
https://www.bbc.com/news/technology-45980863
#deep_learning #Gan
Portrait by AI program sells for $432,000
https://www.bbc.com/news/technology-45980863
#deep_learning #Gan
BBC News
Portrait by AI program sells for $432,000
The AI-generated portrait of a fictional Frenchman sold for 45 times its original estimate.
#خبر
Facebook is open sourcing QNNPACK, a high-performance kernel library that is optimized for mobile AI. The library speeds up many operations, such as depth-wise convolutions, that advanced neural network architectures use. QNNPACK has been integrated into Facebook apps and deployed to billions of devices. On benchmarks such as quantized MobileNetV2, QNNPACK outperforms SOTA implementations by approximately 2x on a variety of phones.
https://code.fb.com/ml-applications/qnnpack/
🙏Thanks to: @Alidiba
Facebook is open sourcing QNNPACK, a high-performance kernel library that is optimized for mobile AI. The library speeds up many operations, such as depth-wise convolutions, that advanced neural network architectures use. QNNPACK has been integrated into Facebook apps and deployed to billions of devices. On benchmarks such as quantized MobileNetV2, QNNPACK outperforms SOTA implementations by approximately 2x on a variety of phones.
https://code.fb.com/ml-applications/qnnpack/
🙏Thanks to: @Alidiba
Facebook Engineering
QNNPACK: Open source library for optimized mobile deep learning
Facebook open-sources QNNPACK, a high-performance kernel library optimized for mobile AI. QNNPACK speeds up many advanced neural network operations.
#آموزش
برای طبقه بندی باینری یه کلاسه چه مواردی را برای مثال منفی انتخاب کنیم؟
برای مثال برای گربه/غیر گربه چه تصاویری را در دیتاست غیر گربه بگذاریم بهتر است؟
One Class Classifying — What kind of data set I should have?
https://medium.com/@lankinen/one-class-classifying-what-kind-of-data-set-i-should-have-1486358e491b
برای طبقه بندی باینری یه کلاسه چه مواردی را برای مثال منفی انتخاب کنیم؟
برای مثال برای گربه/غیر گربه چه تصاویری را در دیتاست غیر گربه بگذاریم بهتر است؟
One Class Classifying — What kind of data set I should have?
https://medium.com/@lankinen/one-class-classifying-what-kind-of-data-set-i-should-have-1486358e491b
Medium
One Class Classifying — What kind of data set I should have?
For all these models I used exact same hyper parameters and only difference was data set I used to train.
state-of-the-art AutoAugment Modules for Image augmentation
#TensorFlowHub #GoogleAI #TFHub
https://tfhub.dev/s?keywords=image_augmentation
#TensorFlowHub #GoogleAI #TFHub
https://tfhub.dev/s?keywords=image_augmentation
Official BERT #TensorFlow code + pre-trained models released by Google AI Language
BERT is method of pre-training language representations, meaning that we train a general-purpose "language understanding" model on a large text corpus (like Wikipedia), and then use that model for downstream #NLP tasks that we care about (like question answering). #BERT outperforms previous methods because it is the first unsupervised, deeply #bidirectional system for pre-training NLP.
https://github.com/google-research/bert/blob/master/README.md
🙏Thanks to: @cyberbully_gng
BERT is method of pre-training language representations, meaning that we train a general-purpose "language understanding" model on a large text corpus (like Wikipedia), and then use that model for downstream #NLP tasks that we care about (like question answering). #BERT outperforms previous methods because it is the first unsupervised, deeply #bidirectional system for pre-training NLP.
https://github.com/google-research/bert/blob/master/README.md
🙏Thanks to: @cyberbully_gng
GitHub
bert/README.md at master · google-research/bert
TensorFlow code and pre-trained models for BERT. Contribute to google-research/bert development by creating an account on GitHub.