Coding Interview Resources
50.6K subscribers
703 photos
7 files
400 links
This channel contains the free resources and solution of coding problems which are usually asked in the interviews.

Managed by: @love_data
Download Telegram
Important skills every self-taught developer should master:

๐Ÿ’ป HTML, CSS & JavaScript โ€” the foundation of web development

โš™๏ธ Git & GitHub โ€” track changes and collaborate effectively

๐Ÿง  Problem-solving โ€” break down and debug complex issues

๐Ÿ—„๏ธ Basic SQL โ€” manage and query data efficiently

๐Ÿงฉ APIs โ€” fetch and use data from external sources

๐Ÿงฑ Frameworks โ€” like React, Flask, or Django to build faster

๐Ÿงผ Clean Code โ€” write readable, maintainable code

๐Ÿ“ฆ Package Managers โ€” like npm or pip for managing libraries

๐Ÿš€ Deployment โ€” host your projects for the world to see

Web Development Resources: https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
โค2
Questions & Answers for Data Analyst Interview

Question 1: Describe a time when you used data analysis to solve a business problem.
Ideal answer: This is your opportunity to showcase your data analysis skills in a real-world context. Be specific and provide examples of your work. For example, you could talk about a time when you used data analysis to identify customer churn, improve marketing campaigns, or optimize product development.

Question 2: What are some of the challenges you have faced in previous data analysis projects, and how did you overcome them?
Ideal answer: This question is designed to assess your problem-solving skills and your ability to learn from your experiences. Be honest and upfront about the challenges you have faced, but also focus on how you overcame them. For example, you could talk about a time when you had to deal with a large and messy dataset, or a time when you had to work with a tight deadline.

Question 3: How do you handle missing values in a dataset?
Ideal answer: Missing values are a common problem in data analysis, so it is important to know how to handle them properly. There are a variety of different methods that you can use, depending on the specific situation. For example, you could delete the rows with missing values, impute the missing values using a statistical method, or assign a default value to the missing values.

Question 4: How do you identify and remove outliers?
Ideal answer: Outliers are data points that are significantly different from the rest of the data. They can be caused by data errors or by natural variation in the data. It is important to identify and remove outliers before performing data analysis, as they can skew the results. There are a variety of different methods that you can use to identify outliers, such as the interquartile range (IQR) method or the standard deviation method.

Question 5: How do you interpret and communicate the results of your data analysis to non-technical audiences?
Ideal answer: It is important to be able to communicate your data analysis findings to both technical and non-technical audiences. When communicating to non-technical audiences, it is important to avoid using jargon and to focus on the key takeaways from your analysis. You can use data visualization tools to help you communicate your findings in a clear and concise way.
In addition to providing specific examples and answers to the questions, it is also important to be enthusiastic and demonstrate your passion for data analysis. Show the interviewer that you are excited about the opportunity to use your skills to solve real-world problems.
โค2
9 Baby Steps to Learn Web Development ๐Ÿ‘‡๐Ÿ‘‡

1. Understand the Basics: Begin with learning the fundamental technologies that power the web: HTML, CSS, and JavaScript. HTML structures the content, CSS styles it, and JavaScript adds interactivity. Focus on building simple web pages to get comfortable with these technologies.

2. Build Simple Websites: Start creating basic websites. Begin with static websites where you practice structuring content with HTML and styling it with CSS. Try building a personal portfolio or a simple landing page to apply what youโ€™ve learned.

3. Learn Version Control with Git: Git is essential for tracking changes and collaborating on projects. Learn the basics of Git and GitHub, such as creating repositories, committing changes, and pushing code. Start by managing your web projects with Git.

4. Dive into Responsive Design: Learn how to make your websites responsive, so they look good on different devices. Study CSS techniques like Flexbox and Grid, and practice using media queries to adapt your siteโ€™s layout for various screen sizes.

5. Explore JavaScript Further: Deepen your understanding of JavaScript by learning about DOM manipulation, event handling, and AJAX. Practice by adding dynamic elements to your websites, such as interactive forms, image sliders, or real-time content updates.

6. Start with Front-End Frameworks: Familiarize yourself with popular front-end frameworks like Bootstrap for faster styling and layout or React.js for building dynamic user interfaces. Use these tools to create more complex web applications.

7. Work on Full-Stack Projects: Once youโ€™re comfortable with front-end development, start learning about back-end technologies like Node.js, Express.js, and databases (SQL or NoSQL). Build full-stack applications that include both front-end and back-end components, such as a blog platform or a basic e-commerce site.

8. Join Web Development Communities: Engage with communities on platforms like StackOverflow, Redditโ€™s webdev subreddit, and GitHub. Contributing to open-source projects or seeking feedback on your work will accelerate your learning.

9. Practice and Keep Learning: Web development is vast and continuously evolving. Keep building projects, learning new frameworks, and staying updated with industry trends. Consistent practice and staying curious are key to becoming a proficient web developer.

5 Free Web Development Courses by Udacity & Microsoft ๐Ÿ‘‡๐Ÿ‘‡

Intro to HTML and CSS

Intro to Backend

Intro to JavaScript

Web Development for Beginners

Object-Oriented JavaScript

Best Web Development Resources

Join @free4unow_backup for more free resources.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค2
Data Structures Interview Preparation
โค1
When youโ€™re in an interview, itโ€™s super important to know how to talk about your projects in a way that impresses the interviewer. Here are some key points to help you do just that:

โžค ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ข๐˜ƒ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„:
- Start with a quick summary of the project you worked on. What was it all about? What were the main goals? Keep it short and sweet something you can explain in about 30 seconds.

โžค ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ ๐—ฆ๐˜๐—ฎ๐˜๐—ฒ๐—บ๐—ฒ๐—ป๐˜:
- What problem were you trying to solve with this project? Explain why this problem was important and needed addressing.

โžค ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ฒ๐—ฑ ๐—ฆ๐—ผ๐—น๐˜‚๐˜๐—ถ๐—ผ๐—ป:
- Describe the solution you came up with. How does it work, and why is it a good fix for the problem?

โžค ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ผ๐—น๐—ฒ:
- Talk about what you specifically did. What were your main tasks? Did you face any challenges, and how did you overcome them? Make sure itโ€™s clear whether you were leading the project, a key player, or supporting the team.

โžค ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ผ๐—ผ๐—น๐˜€:
- Mention the tech and tools you used. This shows your technical know-how and your ability to choose the right tools for the job.

โžค ๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฐ๐—ต๐—ถ๐—ฒ๐˜ƒ๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐˜€:
- Share the results of your project. Did it make things better? How? Mention any improvements, efficiencies, or positive feedback you got.

โžค ๐—ง๐—ฒ๐—ฎ๐—บ ๐—–๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
- Talk about how you collaborated. What was your role in the team? How did you communicate and contribute to the teamโ€™s success?

โžค ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜:
- Reflect on what you learned from the project. What new skills did you gain, and what would you do differently next time?

โžค ๐—ง๐—ถ๐—ฝ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
- Be ready with a 30 second elevator pitch about your projects, and also have a five-minute detailed overview ready.
- If thereโ€™s a pause after you describe the project, donโ€™t hesitate to ask if theyโ€™d like more details or if thereโ€™s a specific part theyโ€™re interested in.

By preparing your project details thoroughly and understanding what the interviewer is looking for, you can talk about your experience in a way that really showcases your skills and increases your chances of getting the job.

Coding Projects: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
โค2
Complete DSA Roadmap

|-- Basic_Data_Structures
| |-- Arrays
| |-- Strings
| |-- Linked_Lists
| |-- Stacks
| โ””โ”€ Queues
|
|-- Advanced_Data_Structures
| |-- Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| | |-- AVL_Trees
| | โ””โ”€ B-Trees
| |
| |-- Graphs
| | |-- Graph_Representation
| | | |- Adjacency_Matrix
| | | โ”” Adjacency_List
| | |
| | |-- Depth-First_Search
| | |-- Breadth-First_Search
| | |-- Shortest_Path_Algorithms
| | | |- Dijkstra's_Algorithm
| | | โ”” Bellman-Ford_Algorithm
| | |
| | โ””โ”€ Minimum_Spanning_Tree
| | |- Prim's_Algorithm
| | โ”” Kruskal's_Algorithm
| |
| |-- Heaps
| | |-- Min_Heap
| | |-- Max_Heap
| | โ””โ”€ Heap_Sort
| |
| |-- Hash_Tables
| |-- Disjoint_Set_Union
| |-- Trie
| |-- Segment_Tree
| โ””โ”€ Fenwick_Tree
|
|-- Algorithmic_Paradigms
| |-- Brute_Force
| |-- Divide_and_Conquer
| |-- Greedy_Algorithms
| |-- Dynamic_Programming
| |-- Backtracking
| |-- Sliding_Window_Technique
| |-- Two_Pointer_Technique
| โ””โ”€ Divide_and_Conquer_Optimization
| |-- Merge_Sort_Tree
| โ””โ”€ Persistent_Segment_Tree
|
|-- Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
| |-- Depth-First_Search
| โ””โ”€ Breadth-First_Search
|
|-- Sorting_Algorithms
| |-- Bubble_Sort
| |-- Selection_Sort
| |-- Insertion_Sort
| |-- Merge_Sort
| |-- Quick_Sort
| โ””โ”€ Heap_Sort
|
|-- Graph_Algorithms
| |-- Depth-First_Search
| |-- Breadth-First_Search
| |-- Topological_Sort
| |-- Strongly_Connected_Components
| โ””โ”€ Articulation_Points_and_Bridges
|
|-- Dynamic_Programming
| |-- Introduction_to_DP
| |-- Fibonacci_Series_using_DP
| |-- Longest_Common_Subsequence
| |-- Longest_Increasing_Subsequence
| |-- Knapsack_Problem
| |-- Matrix_Chain_Multiplication
| โ””โ”€ Dynamic_Programming_on_Trees
|
|-- Mathematical_and_Bit_Manipulation_Algorithms
| |-- Prime_Numbers_and_Sieve_of_Eratosthenes
| |-- Greatest_Common_Divisor
| |-- Least_Common_Multiple
| |-- Modular_Arithmetic
| โ””โ”€ Bit_Manipulation_Tricks
|
|-- Advanced_Topics
| |-- Trie-based_Algorithms
| | |-- Auto-completion
| | โ””โ”€ Spell_Checker
| |
| |-- Suffix_Trees_and_Arrays
| |-- Computational_Geometry
| |-- Number_Theory
| | |-- Euler's_Totient_Function
| | โ””โ”€ Mobius_Function
| |
| โ””โ”€ String_Algorithms
| |-- KMP_Algorithm
| โ””โ”€ Rabin-Karp_Algorithm
|
|-- OnlinePlatforms
| |-- LeetCode
| |-- HackerRank
โค8
Here are some essential SQL tips for beginners ๐Ÿ‘‡๐Ÿ‘‡

โ—† Primary Key = Unique Key + Not Null constraint
โ—† To perform case insensitive search use UPPER() function ex. UPPER(customer_name) LIKE โ€˜A%Aโ€™
โ—† LIKE operator is for string data type
โ—† COUNT(*), COUNT(1), COUNT(0) all are same
โ—† All aggregate functions ignore the NULL values
โ—† Aggregate functions MIN, MAX, SUM, AVG, COUNT are for int data type whereas STRING_AGG is for string data type
โ—† For row level filtration use WHERE and aggregate level filtration use HAVING
โ—† UNION ALL will include duplicates where as UNION excludes duplicates 
โ—† If the results will not have any duplicates, use UNION ALL instead of UNION
โ—† We have to alias the subquery if we are using the columns in the outer select query
โ—† Subqueries can be used as output with NOT IN condition.
โ—† CTEs look better than subqueries. Performance wise both are same.
โ—† When joining two tables , if one table has only one value then we can use 1=1 as a condition to join the tables. This will be considered as CROSS JOIN.
โ—† Window functions work at ROW level.
โ—† The difference between RANK() and DENSE_RANK() is that RANK() skips the rank if the values are the same.
โ—† EXISTS works on true/false conditions. If the query returns at least one value, the condition is TRUE. All the records corresponding to the conditions are returned.

Like for more ๐Ÿ˜„๐Ÿ˜„
โค4