C++ geek
3.74K subscribers
275 photos
3 videos
23 links
Учим C/C++ на примерах
Download Telegram
Давай программировать стек TCP/IP. Part 1: Ethernet & ARP

Написание собственного стека TCP/IP может показаться сложной задачей. Действительно, за более чем тридцать лет существования TCP накопилось множество спецификаций. Однако основная спецификация на удивление компактна — важные части включают разбор заголовков TCP, автомат конечных состояний, контроль перегрузок и вычисление времени ожидания повторной передачи.

Наиболее распространенные протоколы второго и третьего уровней — Ethernet и IP, соответственно, — в сравнении с TCP гораздо проще. В этой серии статей мы реализуем минимальный стек TCP/IP в пространстве пользователя для Linux.

Цель этих публикаций и создаваемого ПО исключительно образовательная — углубленное изучение сетевого и системного программирования.

TUN/TAP устройства
Чтобы перехватывать сетевой трафик низкого уровня из ядра Linux, мы будем использовать TAP-устройство Linux. Если кратко, TUN/TAP устройства часто применяются приложениями в пространстве пользователя для работы с трафиком на уровне L3 и L2 соответственно. Популярным примером является туннелирование, когда пакет инкапсулируется внутри полезной нагрузки другого пакета.

Преимущество TUN/TAP устройств в том, что их легко настроить в программе в пространстве пользователя, и они уже используются во множестве программ, таких как OpenVPN.

Поскольку мы хотим строить стек сетевого взаимодействия, начиная со второго уровня, нам потребуется TAP-устройство. Мы создаем его следующим образом:


/*
* Taken from Kernel Documentation/networking/tuntap.txt
*/
int tun_alloc(char *dev)
{
struct ifreq ifr;
int fd, err;

if( (fd = open("/dev/net/tap", O_RDWR)) < 0 ) {
print_error("Cannot open TUN/TAP dev");
exit(1);
}

CLEAR(ifr);

/* Flags: IFF_TUN - TUN device (no Ethernet headers)
* IFF_TAP - TAP device
*
* IFF_NO_PI - Do not provide packet information
*/
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if( *dev ) {
strncpy(ifr.ifr_name, dev, IFNAMSIZ);
}

if( (err = ioctl(fd, TUNSETIFF, (void *) &ifr)) < 0 ){
print_error("ERR: Could not ioctl tun: %s\n", strerror(errno));
close(fd);
return err;
}

strcpy(dev, ifr.ifr_name);
return fd;
}



https://www.saminiir.com/lets-code-tcp-ip-stack-1-ethernet-arp/

➡️ @cpp_geek
👍3🤩3❤‍🔥11🔥1
Давай программировать стек TCP/IP. Part 2: IPv4 & ICMPv4

На этот раз в нашем TCP/IP стеке в пространстве пользователя мы реализуем минимально жизнеспособный IP-уровень и протестируем его с помощью ICMP-запросов эхо (известных также как ping).

Мы рассмотрим форматы IPv4 и ICMPv4 и опишем, как проверять их целостность. Некоторые функции, такие как фрагментация IP, оставлены в качестве упражнения для читателя.

Для нашего сетевого стека был выбран IPv4 вместо IPv6, так как он до сих пор является основным сетевым протоколом Интернета. Однако это быстро меняется, и наш стек можно будет расширить поддержкой IPv6 в будущем.

Internet Checksum
Поле интернет-контрольной суммы используется для проверки целостности IP-дейтаграммы. Вычисление контрольной суммы относительно простое и определено в оригинальной спецификации:

Поле контрольной суммы представляет собой 16-битное дополнение до единицы суммы всех 16-битных слов в заголовке. Для вычисления контрольной суммы значение этого поля принимается равным нулю.

Фактический код для алгоритма выглядит следующим образом:


uint16_t checksum(void *addr, int count)
{
/* Compute Internet Checksum for "count" bytes
* beginning at location "addr".
* Taken from https://tools.ietf.org/html/rfc1071
*/

register uint32_t sum = 0;
uint16_t * ptr = addr;

while( count > 1 ) {
/* This is the inner loop */
sum += * ptr++;
count -= 2;
}

/* Add left-over byte, if any */
if( count > 0 )
sum += * (uint8_t *) ptr;

/* Fold 32-bit sum to 16 bits */
while (sum>>16)
sum = (sum & 0xffff) + (sum >> 16);

return ~sum;
}


https://www.saminiir.com/lets-code-tcp-ip-stack-2-ipv4-icmpv4/

➡️ @cpp_geek
👍2🔥1
Давай программировать стек TCP/IP. Part 3: TCP Basics & Handshake

Теперь, когда наш стек TCP/IP в пользовательском пространстве имеет минимальные реализации для Ethernet и IPv4, пришло время рассмотреть работу протокола управления передачей (Transmission Control Protocol, TCP).
Работающий на четвертом сетевом уровне OSI1, транспортном, TCP отвечает за восстановление ошибочных соединений и ошибок в доставке пакетов. По сути, TCP - это рабочая лошадка Интернета, обеспечивающая надежную связь практически во всех современных компьютерных сетях.
TCP не совсем новый протокол - первая спецификация вышла в 1974 году2. С тех пор многое изменилось, и TCP обзавелся множеством расширений и исправлений3.
В этой статье мы рассмотрим основные теоретические основы TCP и попытаемся дать мотивацию для его разработки. Кроме того, мы рассмотрим заголовок TCP и обсудим установление соединения (TCP handshaking). В качестве последнего шага мы продемонстрируем первую функциональность TCP в нашем сетевом стеке.


https://www.saminiir.com/lets-code-tcp-ip-stack-3-tcp-handshake/

➡️ @cpp_geek
👍31🔥1
std::tie

std::tie — это функция, которая создает кортеж ссылок на lvalue из своих аргументов или экземпляров std::ignore.

Она может использоваться для распаковки кортежей или пары значений в отдельные переменные. Например, если у вас есть функция, которая возвращает std::pair или std::tuple, вы можете использовать std::tie, чтобы присвоить значения этого кортежа отдельным переменным.

В этом примере мы используем std::tie для распаковки результата вызова set_of_s.insert(value) в две переменные: итератор iter и логическую переменную inserted.
Это позволяет нам проверить, было ли значение успешно вставлено в набор.

➡️ @cpp_geek
👍41
В чем разница между git fetch и git pull?

Разница между этими командами заключается в том, что когда вы используете команду git fetch, Git извлекает последние изменения из удаленного репозитория в ваш локальный репозиторий, но оставляет эти изменения в отдельной ветке git origin.

А команда git pull извлекает и интегрирует (скачивает и сливает) последние изменения из удаленного репозитория в вашу текущую ветку работы.

➡️ @cpp_geek
👍8
Execution policy для параллельных алгоритмов

Execution policy в C++ — это новшество, введенное в стандарте языка C++17. Это механизм, который позволяет выбрать, как именно должны выполняться алгоритмы в стандартной библиотеке: последовательно или параллельно.

Существуют три варианта execution policy:

- seq: выполняет алгоритм последовательно.
- par: выполняет алгоритм параллельно, используя все доступные ядра процессора.
- par_unseq: выполняет алгоритм параллельно и может использовать неупорядоченное исполнение.

Execution policy может быть использован в комбинации с многими алгоритмами в стандартной библиотеке, такими как std::for_each, std::transform, std::reduce и другими. Например, код выше выполняет алгоритм std::for_each параллельно.

➡️ @cpp_geek
4👍2🙈1
Задача

Найти среднее арифметическое в трех рядах.

Для начала продумаем наше решение. Сразу условимся, что длина ряда у нас будет 5. Нам надо найти среднее арифметическое в трех рядах, и в каждом по отдельности, т.е. мы сначала сделаем цикл для рядов, а потом в этом цикле сделаем еще один цикл, только уже для чисел этого ряда.

Теперь подумаем, какие переменные нам понадобятся:

Переменная summa — для суммы чисел каждого ряда;
Переменная average — для среднего арифметического каждого ряда;
Переменная number — обычное число которое мы будем постоянно прибавлять;
Переменные i и j — для циклов, перпенные у нас будут локальные, т.е. использоваться и объявляться в цикле.

➡️ @cpp_geek
🤡8👍43
Готовы с нуля создавать телекоммуникационные решения для беспроводных мобильных сетей и сопутствующих услуг? 🧑‍💻

Отправляйте резюме до 19 октября и присоединяйтесь к команде YADRO Телеком!

Как получить оффер за 3 дня? Листайте карточки выше — все подробности там!

💙 Оставляйте заявку — мы ждём именно вас!
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤡41👍1
Dependency Injection

Dependency Injection (DI) — это паттерн проектирования, который позволяет управлять зависимостями между объектами. Он помогает разделить создание объектов от их использования и обеспечить более гибкую и тестируемую архитектуру программы.

В DI объекты получают свои зависимости не напрямую, а через внешний источник, который их предоставляет. Этот источник называется контейнером внедрения зависимостей. Контейнер отвечает за создание и управление зависимостями, а объекты получают их через конструкторы, методы или свойства.

➡️ @cpp_geek
👍8
Что случится, если exception выйдет за пределы потока?

Если exception выходит за пределы потока, то оно не может быть обработано на текущем уровне, т. к. он уже завершен. В таком случае исключение будет зарегистрировано как неперехваченное и может привести к аварийному завершению программы.

Чтобы избежать данной ситуации, необходимо обернуть код, где может возникнуть исключение, в try-catch блок на том же уровне, что и поток, с которым он связан.

➡️ @cpp_geek
👍42
std::hash

Это структура шаблонного класса, определенная в заголовочном файле. Она предоставляет хеш-функцию для хэширования различных типов данных, включая встроенные и пользовательские.

std::hash используется, например, в ассоциативных контейнерах, таких как std::unordered_map и std::unordered_set, для быстрого доступа к элементам по ключу.

Для пользовательского типа данных требуется явная специализация структуры std::hash для корректной работы хэширования.

➡️ @cpp_geek
6👍4❤‍🔥1
std::initializer_list

Присваивайте значения контейнерам непосредственно с помощью списка инициализаторов, как это можно делать с C-массивами.

Это справедливо и для вложенных контейнеров. Скажите спасибо С++11.

➡️ @cpp_geek
👍21
🚀 Подборка Telegram каналов для программистов

Системное администрирование, DevOps 📌
https://t.iss.one/bash_srv Bash Советы
https://t.iss.one/win_sysadmin Системный Администратор Windows
https://t.iss.one/sysadmin_girl Девочка Сисадмин
https://t.iss.one/srv_admin_linux Админские угодья
https://t.iss.one/linux_srv Типичный Сисадмин
https://t.iss.one/devopslib Библиотека девопса | DevOps, SRE, Sysadmin
https://t.iss.one/linux_odmin Linux: Системный администратор
https://t.iss.one/devops_star DevOps Star (Звезда Девопса)
https://t.iss.one/i_linux Системный администратор
https://t.iss.one/linuxchmod Linux
https://t.iss.one/sys_adminos Системный Администратор
https://t.iss.one/tipsysdmin Типичный Сисадмин (фото железа, было/стало)
https://t.iss.one/sysadminof Книги для админов, полезные материалы
https://t.iss.one/i_odmin Все для системного администратора
https://t.iss.one/i_odmin_book Библиотека Системного Администратора
https://t.iss.one/i_odmin_chat Чат системных администраторов
https://t.iss.one/i_DevOps DevOps: Пишем о Docker, Kubernetes и др.
https://t.iss.one/sysadminoff Новости Линукс Linux

1C разработка 📌
https://t.iss.one/odin1C_rus Cтатьи, курсы, советы, шаблоны кода 1С
https://t.iss.one/DevLab1C 1С:Предприятие 8
https://t.iss.one/razrab_1C 1C Разработчик
https://t.iss.one/buh1C_prog 1C Программист | Бухгалтерия и Учёт
https://t.iss.one/rabota1C_rus Вакансии для программистов 1С

Программирование C++📌
https://t.iss.one/cpp_lib Библиотека C/C++ разработчика
https://t.iss.one/cpp_knigi Книги для программистов C/C++
https://t.iss.one/cpp_geek Учим C/C++ на примерах

Программирование Python 📌
https://t.iss.one/pythonofff Python академия.
https://t.iss.one/BookPython Библиотека Python разработчика
https://t.iss.one/python_real Python подборки на русском и английском
https://t.iss.one/python_360 Книги по Python

Java разработка 📌
https://t.iss.one/BookJava Библиотека Java разработчика
https://t.iss.one/java_360 Книги по Java Rus
https://t.iss.one/java_geek Учим Java на примерах

GitHub Сообщество 📌
https://t.iss.one/Githublib Интересное из GitHub

Базы данных (Data Base) 📌
https://t.iss.one/database_info Все про базы данных

Мобильная разработка: iOS, Android 📌
https://t.iss.one/developer_mobila Мобильная разработка
https://t.iss.one/kotlin_lib Подборки полезного материала по Kotlin
https://t.iss.one/androidspb Разработка под Android: Kotlin, Java.

Фронтенд разработка 📌
https://t.iss.one/frontend_1 Подборки для frontend разработчиков
https://t.iss.one/frontend_sovet Frontend советы, примеры и практика!
https://t.iss.one/React_lib Подборки по React js и все что с ним связано

Разработка игр 📌
https://t.iss.one/game_devv Все о разработке игр

Библиотеки 📌
https://t.iss.one/book_for_dev Книги для программистов Rus
https://t.iss.one/programmist_of Книги по программированию
https://t.iss.one/proglb Библиотека программиста
https://t.iss.one/bfbook Книги для программистов

БигДата, машинное обучение 📌
https://t.iss.one/bigdata_1 Big Data, Machine Learning

Программирование 📌
https://t.iss.one/bookflow Лекции, видеоуроки, доклады с IT конференций
https://t.iss.one/rust_lib Полезный контент по программированию на Rust
https://t.iss.one/golang_lib Библиотека Go (Golang) разработчика
https://t.iss.one/itmozg Программисты, дизайнеры, новости из мира IT
https://t.iss.one/php_lib Библиотека PHP программиста 👨🏼‍💻👩‍💻
https://t.iss.one/nodejs_lib Подборки по Node js и все что с ним связано
https://t.iss.one/ruby_lib Библиотека Ruby программиста
https://t.iss.one/lifeproger Жизнь программиста. Авторский канал.

QA, тестирование 📌
https://t.iss.one/testlab_qa Библиотека тестировщика

Шутки программистов 📌
https://t.iss.one/itumor Шутки программистов

Защита, взлом, безопасность 📌
https://t.iss.one/thehaking Канал о кибербезопасности
https://t.iss.one/xakep_2 Хакер Free

Книги, статьи для дизайнеров 📌
https://t.iss.one/ux_web Статьи, книги для дизайнеров

Математика 📌
https://t.iss.one/Pomatematike Канал по математике
https://t.iss.one/phis_mat Обучающие видео, книги по Физике и Математике
https://t.iss.one/matgeoru Математика | Геометрия | Логика

Excel лайфхак📌
https://t.iss.one/Excel_lifehack

https://t.iss.one/mir_teh Мир технологий (Technology World)

Вакансии 📌
https://t.iss.one/sysadmin_rabota Системный Администратор
https://t.iss.one/progjob Вакансии в IT
Pipes

В C++ пайпы (pipes) представляют собой механизм для односторонней связи между процессами. Они позволяют передавать данные из одного процесса в другой, где один процесс выступает в роли писателя (write end), а другой процесс выступает в роли читателя (read end) пайпа.

Для работы с пайпами вы можете использовать системные вызовы, такие как pipe, fork и функции чтения/записи (read и write), доступные в POSIX-совместимых операционных системах.

Обратите внимание, что дескрипторы чтения и записи пайпа должны быть закрыты в соответствующих процессах с помощью close, чтобы гарантировать правильное завершение операций чтения и записи.

➡️ @cpp_geek
5👍3
Для чего нужен алгоритм generate?

Используется для генерации чисел на основе функции генератора, а затем присваивает эти значения элементам в контейнере в диапазоне [first, last).

➡️ @cpp_geek
👍81
🔥 C++: умные указатели – избавляемся от delete навсегда!

Вы все еще вручную освобождаете память? Это уже не актуально! Разбираем умные указатели (std::unique_ptr, std::shared_ptr) и их преимущества.

🔹 std::unique_ptr – для объектов, у которых один владелец. Память освобождается автоматически, когда указатель выходит из области видимости:


#include <memory>
#include <iostream>

int main() {
std::unique_ptr<int> ptr = std::make_unique<int>(42);
std::cout << *ptr << std::endl; // 42
}


🔹 std::shared_ptr – для объектов, у которых несколько владельцев. Когда последний shared_ptr уничтожается – объект тоже удаляется:


#include <memory>
#include <iostream>

int main() {
std::shared_ptr<int> sp1 = std::make_shared<int>(42);
std::shared_ptr<int> sp2 = sp1; // Теперь два владельца

std::cout << *sp1 << " " << *sp2 << std::endl; // 42 42
}


Забудьте про new и delete, используйте std::make_unique и std::make_shared. Это избавит вас от утечек памяти.

А вы уже полностью отказались от delete? Пишите в комментариях! 👇

➡️ @cpp_geek
👍4