๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐๐๐ฒ๐ฟ๐ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐ฆ๐๐ฎ๐ฟ๐ ๐ช๐ถ๐๐ต๐
๐ป Want to Learn Coding but Donโt Know Where to Start?๐ฏ
Whether youโre a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/437ow7Y
All The Best ๐
๐ป Want to Learn Coding but Donโt Know Where to Start?๐ฏ
Whether youโre a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/437ow7Y
All The Best ๐
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฟ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐๐ต๐ฎ๐ฝ๐ฒ ๐๐ผ๐๐ฟ ๐ฐ๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ: ๐
-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.
-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.
-> 3. Nail the Basics of Statistics & Probability
You canโt call yourself a data scientist if you donโt understand distributions, p-values, confidence intervals, and hypothesis testing.
-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.
-> 5. Learn Machine Learning the Right Way
Start simple:
Linear Regression
Logistic Regression
Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.
-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโdonโt just learn, apply.
Make a portfolio that speaks louder than your resume.
-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.
-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.
๐ฌ๐ผ๐ ๐ฑ๐ผ๐ปโ๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฝ๐ฒ๐ฟ๐ณ๐ฒ๐ฐ๐.
๐ฌ๐ผ๐ ๐ท๐๐๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฐ๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
Hope this helps you ๐
-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.
-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.
-> 3. Nail the Basics of Statistics & Probability
You canโt call yourself a data scientist if you donโt understand distributions, p-values, confidence intervals, and hypothesis testing.
-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.
-> 5. Learn Machine Learning the Right Way
Start simple:
Linear Regression
Logistic Regression
Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.
-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโdonโt just learn, apply.
Make a portfolio that speaks louder than your resume.
-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.
-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.
๐ฌ๐ผ๐ ๐ฑ๐ผ๐ปโ๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฝ๐ฒ๐ฟ๐ณ๐ฒ๐ฐ๐.
๐ฌ๐ผ๐ ๐ท๐๐๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฐ๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
Hope this helps you ๐
๐1
EY Interview Questions for Experienced:
1. Convert a Map to List
2. LinkedList Questions
3. Tracing in Spring Boot micro services.
4. API gateway
5. Rest API implementation
6. Join Queries
7. Database Performance Turning
8. JVM Turning
9. Cloud concepts.
I was bit busy today.
Happy learning ๐ฅณ
1. Convert a Map to List
2. LinkedList Questions
3. Tracing in Spring Boot micro services.
4. API gateway
5. Rest API implementation
6. Join Queries
7. Database Performance Turning
8. JVM Turning
9. Cloud concepts.
I was bit busy today.
Happy learning ๐ฅณ
๐3
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐ฆ๐ต๐ฎ๐ฟ๐ฝ๐ฒ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ฏ Want to Sharpen Your Data Analytics Skills with Hands-On Practice?๐
Watching tutorials can only take you so farโpractical application is what truly builds confidence and prepares you for the real world๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GQGR1B
Start practicing what actually gets you hiredโ ๏ธ
๐ฏ Want to Sharpen Your Data Analytics Skills with Hands-On Practice?๐
Watching tutorials can only take you so farโpractical application is what truly builds confidence and prepares you for the real world๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GQGR1B
Start practicing what actually gets you hiredโ ๏ธ
๐1
A-Z of essential data science concepts
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Data Science Interview Resources
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like for more ๐
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Data Science Interview Resources
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like for more ๐
๐2
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
๐ Want to Learn Data Analytics but Hate the High Price Tags?๐ฐ๐
Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐ป๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iXNfS3
All The Best ๐
๐ Want to Learn Data Analytics but Hate the High Price Tags?๐ฐ๐
Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐ป๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iXNfS3
All The Best ๐
Intro to Python for Computer Science.pdf
17.5 MB
Intro to Python for Computer Science and Data Science
Paul & Harvey Deitel, 2022
Paul & Harvey Deitel, 2022
Python_in_a_Nutshell_A_Desktop_Quick_Reference (1).pdf
5.8 MB
Python in a Nutshell
Alex Martelli, 2023
Alex Martelli, 2023
๐3
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ฟ๐ผ๐บ ๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐๐
Top Companies Offering FREE Certification Courses To Upskill In 2025
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/4jpmI0I
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Qualc :- https://pdlink.in/3YrFTyK
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
Top Companies Offering FREE Certification Courses To Upskill In 2025
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/4jpmI0I
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Qualc :- https://pdlink.in/3YrFTyK
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
*FREE ONLINE COURSES*
*1. Harvard University*
Harvard University is one of the worldโs most prestigious universities, and it offers a wide range of free online courses through its HarvardX program. Courses range from computer science and business to humanities and social sciences.
https://pll.harvard.edu/catalog/free
*2. Massachusetts Institute of Technology (MIT)*
MIT is a renowned institution in the field of technology, and it offers free online courses in engineering, computer science, data science, and more through its OpenCourseWare platform.
https://ocw.mit.edu/search/
*3. Stanford University*
Stanford University is a world-renowned research institution, and it offers a variety of free online courses through its OpenEdX platform. Courses include computer science, engineering, and social sciences.
https://online.stanford.edu/explore
*4. University of California, Berkeley*
UC Berkeley is a top public research university, and it offers a range of free online courses in subjects such as computer science, data science, and business through its edX platform.
https://www.edx.org/school/uc-berkeleyx
*5. California Institute of Technology (Caltech)*
Caltech is a renowned institution in the field of science and engineering, and it offers a range of free online courses through its CaltechX platform. Courses include astrophysics, quantum mechanics, and more.
https://onlineeducation.caltech.edu/
React โค๏ธ for more
*1. Harvard University*
Harvard University is one of the worldโs most prestigious universities, and it offers a wide range of free online courses through its HarvardX program. Courses range from computer science and business to humanities and social sciences.
https://pll.harvard.edu/catalog/free
*2. Massachusetts Institute of Technology (MIT)*
MIT is a renowned institution in the field of technology, and it offers free online courses in engineering, computer science, data science, and more through its OpenCourseWare platform.
https://ocw.mit.edu/search/
*3. Stanford University*
Stanford University is a world-renowned research institution, and it offers a variety of free online courses through its OpenEdX platform. Courses include computer science, engineering, and social sciences.
https://online.stanford.edu/explore
*4. University of California, Berkeley*
UC Berkeley is a top public research university, and it offers a range of free online courses in subjects such as computer science, data science, and business through its edX platform.
https://www.edx.org/school/uc-berkeleyx
*5. California Institute of Technology (Caltech)*
Caltech is a renowned institution in the field of science and engineering, and it offers a range of free online courses through its CaltechX platform. Courses include astrophysics, quantum mechanics, and more.
https://onlineeducation.caltech.edu/
React โค๏ธ for more
โค6๐1
Forwarded from Artificial Intelligence
๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ & ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ ๐๐ฎ๐ป๐ฑ ๐ง๐ผ๐ฝ ๐๐ผ๐ฏ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn.
Itโs part of their Career Essentials program designed to make you job-ready with real-world AI skills.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jY0cwB
This certification will boost your resumeโ ๏ธ
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn.
Itโs part of their Career Essentials program designed to make you job-ready with real-world AI skills.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jY0cwB
This certification will boost your resumeโ ๏ธ
Here are 8 concise tips to help you ace a technical AI engineering interview:
๐ญ. ๐๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐๐๐ ๐ณ๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐ - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.
๐ฎ. ๐๐ถ๐๐ฐ๐๐๐ ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐ ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.
๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฒ ๐๐๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ฒ๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐ - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.
๐ฐ. ๐ฆ๐๐ฎ๐ ๐๐ฝ๐ฑ๐ฎ๐๐ฒ๐ฑ ๐ผ๐ป ๐ฟ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.
๐ฑ. ๐๐ถ๐๐ฒ ๐ถ๐ป๐๐ผ ๐บ๐ผ๐ฑ๐ฒ๐น ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐ - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.
๐ฒ. ๐๐ถ๐๐ฐ๐๐๐ ๐ณ๐ถ๐ป๐ฒ-๐๐๐ป๐ถ๐ป๐ด ๐๐ฒ๐ฐ๐ต๐ป๐ถ๐พ๐๐ฒ๐ - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.
๐ณ. ๐๐ฒ๐บ๐ผ๐ป๐๐๐ฟ๐ฎ๐๐ฒ ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐๐ถ๐๐ฒ - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.
๐ด. ๐๐๐ธ ๐๐ต๐ผ๐๐ด๐ต๐๐ณ๐๐น ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.
Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
๐ญ. ๐๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐๐๐ ๐ณ๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐ - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.
๐ฎ. ๐๐ถ๐๐ฐ๐๐๐ ๐ฝ๐ฟ๐ผ๐บ๐ฝ๐ ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.
๐ฏ. ๐ฆ๐ต๐ฎ๐ฟ๐ฒ ๐๐๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐ ๐ฒ๐ ๐ฎ๐บ๐ฝ๐น๐ฒ๐ - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.
๐ฐ. ๐ฆ๐๐ฎ๐ ๐๐ฝ๐ฑ๐ฎ๐๐ฒ๐ฑ ๐ผ๐ป ๐ฟ๐ฒ๐๐ฒ๐ฎ๐ฟ๐ฐ๐ต - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.
๐ฑ. ๐๐ถ๐๐ฒ ๐ถ๐ป๐๐ผ ๐บ๐ผ๐ฑ๐ฒ๐น ๐ฎ๐ฟ๐ฐ๐ต๐ถ๐๐ฒ๐ฐ๐๐๐ฟ๐ฒ๐ - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.
๐ฒ. ๐๐ถ๐๐ฐ๐๐๐ ๐ณ๐ถ๐ป๐ฒ-๐๐๐ป๐ถ๐ป๐ด ๐๐ฒ๐ฐ๐ต๐ป๐ถ๐พ๐๐ฒ๐ - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.
๐ณ. ๐๐ฒ๐บ๐ผ๐ป๐๐๐ฟ๐ฎ๐๐ฒ ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐๐ถ๐๐ฒ - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.
๐ด. ๐๐๐ธ ๐๐ต๐ผ๐๐ด๐ต๐๐ณ๐๐น ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.
Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
๐1
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐ธ๐๐ฟ๐ผ๐ฐ๐ธ๐ฒ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Whether youโre a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FdLMcv
Gain the skills to manage analytics projectsโ ๏ธ
Whether youโre a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FdLMcv
Gain the skills to manage analytics projectsโ ๏ธ
Breaking into Data Science doesnโt need to be complicated.
If youโre just starting out,
Hereโs how to simplify your approach:
Avoid:
๐ซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐ซ Spending months on theoretical concepts without hands-on practice.
๐ซ Overloading your resume with keywords instead of impactful projects.
๐ซ Believing you need a Ph.D. to break into the field.
Instead:
โ Start with Python or Rโfocus on mastering one language first.
โ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โ Dive into a simple machine learning model (like linear regression) to understand the basics.
โ Solve real-world problems with open datasets and share them in a portfolio.
โ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
If youโre just starting out,
Hereโs how to simplify your approach:
Avoid:
๐ซ Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
๐ซ Spending months on theoretical concepts without hands-on practice.
๐ซ Overloading your resume with keywords instead of impactful projects.
๐ซ Believing you need a Ph.D. to break into the field.
Instead:
โ Start with Python or Rโfocus on mastering one language first.
โ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
โ Dive into a simple machine learning model (like linear regression) to understand the basics.
โ Solve real-world problems with open datasets and share them in a portfolio.
โ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content ๐๐
Hope this helps you ๐
#ai #datascience
๐4
๐ฏ๐ฌ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ฃ ๐๐๐๐ ๐๐ผ ๐ฆ๐๐ฝ๐ฒ๐ฟ๐ฐ๐ต๐ฎ๐ฟ๐ด๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Whether youโre a student, jobseeker, aspiring entrepreneur, or working professionalโHP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45ci02k
Join millions of learners worldwide who are already upgrading their skillsets through HP LIFEโ ๏ธ
Whether youโre a student, jobseeker, aspiring entrepreneur, or working professionalโHP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45ci02k
Join millions of learners worldwide who are already upgrading their skillsets through HP LIFEโ ๏ธ
Important questions to ace your machine learning interview with an approach to answer:
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
Data Science Interview Resources
๐๐
https://topmate.io/coding/914624
Like for more ๐
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
Data Science Interview Resources
๐๐
https://topmate.io/coding/914624
Like for more ๐
โค2
Forwarded from Python Projects & Resources
๐ฒ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐๐๐๐ฟ๐ฒ-๐ฃ๐ฟ๐ผ๐ผ๐ณ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FcwrZK
Enjoy Learning โ ๏ธ
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FcwrZK
Enjoy Learning โ ๏ธ