Coding & Data Science Resources
30.4K subscribers
334 photos
515 files
337 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
๐Ÿ”— Generative AI in Data Analytic
๐Ÿ”ฅ1
๐—ง๐—–๐—ฆ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ข๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—บ๐—ฒ๐—ป๐˜ - ๐—˜๐—ป๐—ฟ๐—ผ๐—น๐—น ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ˜

Want to know how top companies handle massive amounts of data without losing track? ๐Ÿ“Š

TCS is offering a FREE beginner-friendly course on Master Data Management, and yesโ€”it comes with a certificate! ๐ŸŽ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jGFBw0

Just click and start learning!โœ…๏ธ
๐Ÿ‘1
Data Analytics Pattern Identification....;;

Trend Analysis: Examining data over time to identify upward or downward trends.

Seasonal Patterns: Identifying recurring patterns or trends based on seasons or specific time periods

Correlation: Understanding relationships between variables and how changes in one may affect another.

Outlier Detection: Identifying data points that deviate significantly from the overall pattern.

Clustering: Grouping similar data points together to find natural patterns within the data.

Classification: Categorizing data into predefined classes or groups based on certain features.

Regression Analysis: Predicting a dependent variable based on the values of independent variables.

Frequency Distribution: Analyzing the distribution of values within a dataset.

Pattern Recognition: Identifying recurring structures or shapes within the data.

Text Analysis: Extracting insights from unstructured text data through techniques like sentiment analysis or topic modeling.

These patterns help organizations make informed decisions, optimize processes, and gain a deeper understanding of their data.
๐Ÿ‘1
Useful Python for data science cheat sheets ๐Ÿ‘‡
๐Ÿ‘1
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—บ๐—ฒ๐—ป๐˜ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

If youโ€™re serious about starting your tech journey, Python is one of the best languages to master๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ‘จโ€๐ŸŽ“

Iโ€™ve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ€” absolutely FREE๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lOVqmb

Start today, and youโ€™ll thank yourself tomorrow.โœ…๏ธ
๐Ÿ‘2
โœ… Become a Full Stack Developer for FREE:

HTML โ†’ https://html.spec.whatwg.org/multipage/

CSS3 โ†’ https://web.dev/learn/css/

Javascript โ†’ https://LearnJavaScript.online

React โ†’ https://reactjs.org

Python โ†’ https://python.org

Java โ†’ https://java67.com

Ruby โ†’ https://gorails.com

SQL โ†’ https://SQLbolt.com

MongoDB โ†’ https://learn.mongodb.com

AWS โ†’ https://aws.amazon.com/training

Azure โ†’ https://learn.microsoft.com/en-us/training

Git & GitHub โ†’ https://LearnGitBranching.js.org

Google Cloud โ†’ https://cloud.google.com/edu
๐Ÿ‘5
WHATS AN ARRAY?
๐Ÿ‘4โค2๐Ÿ”ฅ1
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Ever wondered how machines describe images in words?๐Ÿ’ป

Want to get hands-on with cutting-edge AI and computer vision โ€” for FREE?๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42FaT0Y

๐ŸŽฏ Start Learning AI for FREE
๐Ÿ‘1
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘2