Important Topics to become a data scientist
[Advanced Level]
ππ
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Join @datasciencefun to learning important data science and machine learning concepts
ENJOY LEARNING ππ
[Advanced Level]
ππ
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Join @datasciencefun to learning important data science and machine learning concepts
ENJOY LEARNING ππ
π5
π1π₯1
Some useful telegram channels to learn data analytics & data science
Python interview books
ππ
https://t.iss.one/dsabooks
Data Analyst Interviews
ππ
https://t.iss.one/DataAnalystInterview
SQL for data analysis
ππ
https://t.iss.one/sqlanalyst
Data Science & Machine Learning
ππ
https://t.iss.one/datasciencefun
Data Science Projects
ππ
https://t.iss.one/pythonspecialist
Python for data analysis
ππ
https://t.iss.one/pythonanalyst
Excel for data analysis
ππ
https://t.iss.one/excel_analyst
Power BI/ Tableau
ππ
https://t.iss.one/PowerBI_analyst
Data Analysis Books
ππ
https://t.iss.one/learndataanalysis
Python interview books
ππ
https://t.iss.one/dsabooks
Data Analyst Interviews
ππ
https://t.iss.one/DataAnalystInterview
SQL for data analysis
ππ
https://t.iss.one/sqlanalyst
Data Science & Machine Learning
ππ
https://t.iss.one/datasciencefun
Data Science Projects
ππ
https://t.iss.one/pythonspecialist
Python for data analysis
ππ
https://t.iss.one/pythonanalyst
Excel for data analysis
ππ
https://t.iss.one/excel_analyst
Power BI/ Tableau
ππ
https://t.iss.one/PowerBI_analyst
Data Analysis Books
ππ
https://t.iss.one/learndataanalysis
π6β€1π₯°1
π― Sites to practice programming and solve challenges to improve programming skills π―
1οΈβ£ https://edabit.com
2οΈβ£ https://codeforces.com
3οΈβ£ https://www.codechef.com
4οΈβ£ https://leetcode.com
5οΈβ£ https://www.codewars.com
6οΈβ£ https://www.pythonchallenge.com
7οΈβ£ https://coderbyte.com
8οΈβ£ https://www.codingame.com/start
9οΈβ£ https://www.freecodecamp.org/learn
ENJOY LEARNING ππ
1οΈβ£ https://edabit.com
2οΈβ£ https://codeforces.com
3οΈβ£ https://www.codechef.com
4οΈβ£ https://leetcode.com
5οΈβ£ https://www.codewars.com
6οΈβ£ https://www.pythonchallenge.com
7οΈβ£ https://coderbyte.com
8οΈβ£ https://www.codingame.com/start
9οΈβ£ https://www.freecodecamp.org/learn
ENJOY LEARNING ππ
π2β€1π1
Please go through this top 10 SQL projects with Datasets that you can practice and can add in your resume
π1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)
π2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
π3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)
π4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
π5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
π6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)
π 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)
π8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)
π9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)
π10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itβs a programming language try to make it more exciting for yourself.
Join for more: https://t.iss.one/DataPortfolio
Hope this piece of information helps you
π1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)
π2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
π3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)
π4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
π5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
π6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)
π 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)
π8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)
π9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)
π10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since itβs a programming language try to make it more exciting for yourself.
Join for more: https://t.iss.one/DataPortfolio
Hope this piece of information helps you
π1