Coding & Data Science Resources
30.4K subscribers
334 photos
515 files
337 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
Want To become a Backend Developer?

Hereโ€™s a roadmap with essential concepts:

1. Programming Languages

JavaScript (Node.js), Python, Java, Ruby, Go, or PHP: Pick one language and get comfortable with syntax & basics.


2. Version Control

Git: Learn version control basics, commit changes, branching, and collaboration on GitHub/GitLab.


3. Databases

Relational Databases: Master SQL basics with databases like MySQL or PostgreSQL. Learn how to design schemas, write efficient queries, and perform joins.
NoSQL Databases: Understand when to use NoSQL (MongoDB, Cassandra) vs. SQL. Learn data modeling for NoSQL.


4. APIs & Web Services

REST APIs: Learn how to create, test, and document RESTful services using tools like Postman.
GraphQL: Gain an understanding of querying and mutation, and when GraphQL may be preferred over REST.
gRPC: Explore gRPC for high-performance communication between services if your stack supports it.


5. Server & Application Frameworks

Frameworks: Master backend frameworks in your chosen language (e.g., Express for Node.js, Django for Python, Spring Boot for Java).
Routing & Middleware: Learn how to structure routes, manage requests, and use middleware.


6. Authentication & Authorization

JWT: Learn how to manage user sessions and secure APIs using JSON Web Tokens.
OAuth2: Understand OAuth2 for third-party authentication (e.g., Google, Facebook).
Session Management: Learn to implement secure session handling and token expiration.


7. Caching

Redis or Memcached: Learn caching to optimize performance, improve response times, and reduce load on databases.
Browser Caching: Set up HTTP caching headers for browser caching of static resources.


8. Message Queues & Event-Driven Architecture

Message Brokers: Learn message queues like RabbitMQ, Kafka, or AWS SQS for handling asynchronous processes.
Pub/Sub Pattern: Understand publish/subscribe patterns for decoupling services.


9. Microservices & Distributed Systems

Microservices Design: Understand service decomposition, inter-service communication, and Bounded Contexts.
Distributed Systems: Learn fundamentals like the CAP Theorem, data consistency models, and resiliency patterns (Circuit Breaker, Bulkheads).


10. Testing & Debugging

Unit Testing: Master unit testing for individual functions.
Integration Testing: Test interactions between different parts of the system.
End-to-End (E2E) Testing: Simulate real user scenarios to verify application behavior.
Debugging: Use logs, debuggers, and tracing to locate and fix issues.

11. Containerization & Orchestration

Docker: Learn how to containerize applications for easy deployment and scaling.
Kubernetes: Understand basics of container orchestration, scaling, and management.


12. CI/CD (Continuous Integration & Continuous Deployment)

CI/CD Tools: Familiarize yourself with tools like Jenkins, GitHub Actions, or GitLab CI/CD.
Automated Testing & Deployment: Automate tests, builds, and deployments for rapid development cycles.


13. Cloud Platforms

AWS, Azure, or Google Cloud: Learn basic cloud services such as EC2 (compute), S3 (storage), and RDS (databases).
Serverless Functions: Explore serverless options like AWS Lambda for on-demand compute resources.


14. Logging & Monitoring

Centralized Logging: Use tools like ELK Stack (Elasticsearch, Logstash, Kibana) for aggregating and analyzing logs.
Monitoring & Alerting: Implement real-time monitoring with Prometheus, Grafana, or CloudWatch.


15. Security

Data Encryption: Encrypt data at rest and in transit using SSL/TLS and other encryption standards.
Secure Coding: Protect against common vulnerabilities (SQL injection, XSS, CSRF).
Zero Trust Architecture: Learn to design systems with the principle of least privilege and regular authentication.


16. Scalability & Optimization

Load Balancing: Distribute traffic evenly across servers.
Database Optimization: Learn indexing, sharding, and partitioning.
Horizontal vs. Vertical Scaling: Know when to scale by adding resources to existing servers or by adding more servers.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘

#backend
โค1
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—œ๐—ง ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ง๐—ฒ๐—ฐ๐—ต, ๐—”๐—œ & ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Dreaming of an MIT education without the tuition fees? ๐ŸŽฏ

These 5 FREE courses from MIT will help you master the fundamentals of programming, AI, machine learning, and data scienceโ€”all from the comfort of your home! ๐ŸŒโœจ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45cvR95

Your gateway to a smarter careerโœ…๏ธ
Evolution of Programming Languages๐Ÿ–ฅ๏ธ


๐Ÿ”ฐProgramming Languages๐Ÿ”ฐ

1. JAVA:
More than 85% android apps are created using JAVA. It is also used in big (big means big) websites. It is a portable programming language which makes it easy to use on multi platforms.
2. Java Script:
Its a browser/client side language. It makes the webpage more interactive. Like for example when you enter a comment on Facebook then the whole page doesnโ€™t load., just that comment is added. This kind of functionalities are added into webpages with JavaScript. Javascript brought about a revolution in webapps.
3. Assembly Language:
The most low level programming language because its nothing more than machine code written in human readable form. Its hard to write and you need to have deep understanding of computers to use this because you are really talking with it. Its very fast in terms of execution.
4. C:
Its a low level language too thatโ€™s why its fast. It is used to program operating system, computer games and software which need to be fast. It is hard to write but gives you more control of your computer.
5. C++ :
Its C with more features and those features make it more complex.
6. Perl:
A language which was developed to create small scripts easily . Programming in Perl is easy and efficient but the programs are comparatively slower.
7. Python:
Perl was made better and named Python. Its easy, efficient and flexible. You can automate things with python in a go.
8. Ruby:
Its similar to Python but it became popular when they created a web application development framework named Rails which lets developers to write their web application conveniently.
9. HTML and CSS:
HTML and CSS are languages not programming languages because they are just used display things on a website. They do not do any actual processing. HTML is used to create the basic structure of the website and then CSS is used to make it look good.
10. PHP:
It is used to process things in a website. It is server-sided language as it doesnโ€™t get executed in user browser, but on the server. It can be used to generate dynamic webpage content.
11. SQL:
This is not exactly a programming language. It is used to interact with databases.

โžก๏ธ This list could be long because there are too many programming language but I introduced you to the popular ones.

โ“Which Language Should Be Your First Programming Language?

โœ… Suggestions..

1. Getting Started
Learn HTML & CSS. They are easy and will give you a basic idea of how programming works. You will be able to create your own webpages. After HTML you can go with PHP and SQL, so will have a good grasp over web designing and then you can go with python, C or Java. I assure you that PHP, HTML and SQL will be definitely useful in your hacking journey.

2. Understanding Computer And Programming Better
C..The classic C! C is one of the most foundational languages. If you learn C, you will have a deep knowledge of Computers and you will have a greater understanding of programming too, that will make you a better programmer. You will spend most of your time compiling though (just trying to crack a joke).

3. Too Eager To Create Programs?
Python! Python is very easy to learn and you can create a program which does something instead of programming calculators. Well Python doesnโ€™t start you from the basics but with if you know python, you will be able to understand other languages better. One benefit of python is that you donโ€™t need to compile the script to run it, just write one and run it.

Join for more: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
โค2
๐Ÿฑ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น ๐—š๐—ถ๐˜๐—›๐˜‚๐—ฏ ๐—ฅ๐—ฒ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ๐Ÿ˜

Looking to Master Python for Free?โœจ๏ธ

These 5 GitHub repositories are all you need to level up โ€” from beginner to advanced! ๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FG7DcW

๐Ÿ“Œ Save this post & share it with a Python learner!
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—ง๐—ผ ๐—–๐—ต๐—ฎ๐—ป๐—ด๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐Ÿ˜

๐ŸŽฏ Want to switch careers or upgrade your skills โ€” without spending a single rupee?

Check out 6 handpicked, beginner-friendly courses in high-demand fields like Data Science, Web Development, Digital Marketing, Project Management, and more. ๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4e1I17a

๐Ÿ’ฅ Start learning today and build the skills top companies want!โœ…๏ธ
๐Ÿ‘1
Python's Role in AI & Automation
โค2
Forwarded from Artificial Intelligence
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐˜„๐—ถ๐˜๐—ต ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐—จ๐—ป๐—ถ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ถ๐˜๐˜†๐Ÿ˜

๐ŸŽฏ Want to break into Data Science without spending a single rupee?๐Ÿ’ฐ

Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere๐Ÿ‘จโ€๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HxOgTW

These courses are designed by Ivy League experts and are trusted by thousands globallyโœ…๏ธ
โค2
๐ŸŒ€ONE PROBLEM, ONE TOOL๐ŸŒ€

PROBLEMS                    - TOOLS
1. Graphic Design         - Canva
2. Subtitles                    - Blink
3. Digital Store              - Gumroad
4. Link in Bio                 - Stan store
5. Payment Gateway    - Wise
6. Profile Picture           - Pfpmaker
7. IG Automation          - Manychat
8. Email Marketing       -  ConvertKit
9. Design Anything       - Gen Al Firefly
10. Viral Analytics        - ViralFindr
11. Digital Products     - Product hunt
12. Logo                        - Lookadesign
13. Content Idea          - ChatGPT
โค6
๐ˆ๐๐Œ ๐…๐‘๐„๐„ ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง ๐‚๐จ๐ฎ๐ซ๐ฌ๐ž๐ฌ๐Ÿ˜

๐Ÿš€ Dive into the world of Data Analytics with these 6 free courses by IBM!

Gain practical knowledge and stand out in your career with tools designed for real-world applications.

All courses come with expert guidance and are free to access!๐ŸŽ‰

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 
 
https://bit.ly/4iXOmmb
 
Enroll For FREE & Get Certified ๐ŸŽ“
โค1๐Ÿ‘1
Coding is just like the language we use to talk to computers. It's not the skill itself, but rather how do I innovate? How do I build something interesting for my end users?

In a recently leaked recording, AWS CEO told employees that most developers could stop coding once AI takes over, predicting this is likely to happen within 24 months.

Instead of AI replacing developers or expecting a decline in this role, I believe he meant that responsibilities of software developers would be changed significantly by AI.

Being a developer in 2025 may be different from what it was in 2020, Garman, the CEO added.

Meanwhile, Amazon's AI assistant has saved the company $260M & 4,500 developer years of work by remarkably cutting down software upgrade times.

Amazon CEO also confirmed that developers shipped 79% of AI-generated code reviews without changes.

I guess with all the uncertainty, one thing is clear: Ability to quickly adjust and collaborate with AI will be important soft skills more than ever in the of AI.
โค2
๐Ÿฐ ๐—›๐—ถ๐—ด๐—ต-๐—œ๐—บ๐—ฝ๐—ฎ๐—ฐ๐˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฎ๐˜‚๐—ป๐—ฐ๐—ต ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kC18XE

These courses help you gain hands-on experience โ€” exactly what top MNCs look for!โœ…๏ธ
Today let's understand the fascinating world of Data Science from start.

## What is Data Science?

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data. In simpler terms, data science involves obtaining, processing, and analyzing data to gain insights for various purposesยนยฒ.

### The Data Science Lifecycle

The data science lifecycle refers to the various stages a data science project typically undergoes. While each project is unique, most follow a similar structure:

1. Data Collection and Storage:
- In this initial phase, data is collected from various sources such as databases, Excel files, text files, APIs, web scraping, or real-time data streams.
- The type and volume of data collected depend on the specific problem being addressed.
- Once collected, the data is stored in an appropriate format for further processing.

2. Data Preparation:
- Often considered the most time-consuming phase, data preparation involves cleaning and transforming raw data into a suitable format for analysis.
- Tasks include handling missing or inconsistent data, removing duplicates, normalization, and data type conversions.
- The goal is to create a clean, high-quality dataset that can yield accurate and reliable analytical results.

3. Exploration and Visualization:
- During this phase, data scientists explore the prepared data to understand its patterns, characteristics, and potential anomalies.
- Techniques like statistical analysis and data visualization are used to summarize the data's main features.
- Visualization methods help convey insights effectively.

4. Model Building and Machine Learning:
- This phase involves selecting appropriate algorithms and building predictive models.
- Machine learning techniques are applied to train models on historical data and make predictions.
- Common tasks include regression, classification, clustering, and recommendation systems.

5. Model Evaluation and Deployment:
- After building models, they are evaluated using metrics such as accuracy, precision, recall, and F1-score.
- Once satisfied with the model's performance, it can be deployed for real-world use.
- Deployment may involve integrating the model into an application or system.

### Why Data Science Matters

- Business Insights: Organizations use data science to gain insights into customer behavior, market trends, and operational efficiency. This informs strategic decisions and drives business growth.

- Healthcare and Medicine: Data science helps analyze patient data, predict disease outbreaks, and optimize treatment plans. It contributes to personalized medicine and drug discovery.

- Finance and Risk Management: Financial institutions use data science for fraud detection, credit scoring, and risk assessment. It enhances decision-making and minimizes financial risks.

- Social Sciences and Public Policy: Data science aids in understanding social phenomena, predicting election outcomes, and optimizing public services.

- Technology and Innovation: Data science fuels innovations in artificial intelligence, natural language processing, and recommendation systems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค3
Top 7 Must-Prepare Topics for Coding Interviews (2025 Edition)

โœ… Arrays & Strings โ€“ Master problems on rotation, sliding window, two pointers, etc.
โœ… Linked Lists โ€“ Practice reversal, cycle detection, and merging lists
โœ… Hashing & Maps โ€“ Use hash tables for fast lookups and frequency-based problems
โœ… Recursion & Backtracking โ€“ Solve problems like permutations, subsets, and Sudoku
โœ… Dynamic Programming โ€“ Understand memoization, tabulation, and classic patterns
โœ… Trees & Graphs โ€“ Cover traversal (BFS/DFS), shortest paths, and tree operations
โœ… Stacks & Queues โ€“ Solve problems involving monotonic stacks, parentheses, and sliding windows

These are the essentials to crack FAANG-level interviews or product-based companies.
โค1