Coding & Data Science Resources
30.4K subscribers
334 photos
515 files
337 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
Forwarded from Generative AI
๐Ÿฐ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐——๐—ฎ๐—ถ๐—น๐˜† (๐—ก๐—ผ ๐—ฆ๐—ถ๐—ด๐—ป๐˜‚๐—ฝ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

๐Ÿš€ Want to Sharpen Your Data Analytics Skills for FREE?๐Ÿ’ซ

If youโ€™re learning data analytics and want to build real skills, theory alone wonโ€™t cut it. You need hands-on practiceโ€”and the best part? You can do it daily, for free!๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/44WK6ie

Enjoy Learning โœ…๏ธ
If I had to start learning data analyst all over again, I'd follow this:

1- Learn SQL:

---- Joins (Inner, Left, Full outer and Self)
---- Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)
---- Group by and Having clause
---- CTE and Subquery
---- Windows Function (Rank, Dense Rank, Row number, Lead, Lag etc)

2- Learn Excel:

---- Mathematical (COUNT, SUM, AVG, MIN, MAX, etc)
---- Logical Functions (IF, AND, OR, NOT)
---- Lookup and Reference (VLookup, INDEX, MATCH etc)
---- Pivot Table, Filters, Slicers

3- Learn BI Tools:

---- Data Integration and ETL (Extract, Transform, Load)
---- Report Generation
---- Data Exploration and Ad-hoc Analysis
---- Dashboard Creation

4- Learn Python (Pandas) Optional:

---- Data Structures, Data Cleaning and Preparation
---- Data Manipulation
---- Merging and Joining Data (Merging and joining DataFrames -similar to SQL joins)
---- Data Visualization (Basic plotting using Matplotlib and Seaborn)

Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you ๐Ÿ˜Š
โค1
๐—ง๐—ผ๐—ฝ ๐— ๐—ก๐—–๐˜€ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Google :- https://pdlink.in/3H2YJX7

Microsoft :- https://pdlink.in/4iq8QlM

Infosys :- https://pdlink.in/4jsHZXf

IBM :- https://pdlink.in/3QyJyqk

Cisco :- https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified ๐ŸŽ“
Machine Learning โ€“ Essential Concepts ๐Ÿš€

1๏ธโƒฃ Types of Machine Learning

Supervised Learning โ€“ Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning โ€“ Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning โ€“ Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2๏ธโƒฃ Key Algorithms

Regression โ€“ Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification โ€“ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).

Clustering โ€“ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction โ€“ Reduces the number of features (PCA, t-SNE, LDA).


3๏ธโƒฃ Model Training & Evaluation

Train-Test Split โ€“ Dividing data into training and testing sets.

Cross-Validation โ€“ Splitting data multiple times for better accuracy.

Metrics โ€“ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4๏ธโƒฃ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5๏ธโƒฃ Overfitting & Underfitting

Overfitting โ€“ Model learns noise, performs well on training but poorly on test data.

Underfitting โ€“ Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6๏ธโƒฃ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7๏ธโƒฃ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8๏ธโƒฃ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค3
๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

๐Ÿš€ Learn In-Demand Tech Skills for Free โ€” Certified by Microsoft!

These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Hio2Vg

Enroll For FREE & Get Certified๐ŸŽ“๏ธ
๐Ÿ‘1
Frequently asked Java Programs
โค1
Forwarded from Artificial Intelligence
๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—”๐—ง๐—” ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐Ÿ˜

Gain Real-World Data Analytics Experience with TATA โ€“ 100% Free!

This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ€” no experience required!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FyjDgp

Enroll For FREE & Get Certified๐ŸŽ“๏ธ