*FREE ONLINE COURSES*
*1. Harvard University*
Harvard University is one of the world’s most prestigious universities, and it offers a wide range of free online courses through its HarvardX program. Courses range from computer science and business to humanities and social sciences.
https://pll.harvard.edu/catalog/free
*2. Massachusetts Institute of Technology (MIT)*
MIT is a renowned institution in the field of technology, and it offers free online courses in engineering, computer science, data science, and more through its OpenCourseWare platform.
https://ocw.mit.edu/search/
*3. Stanford University*
Stanford University is a world-renowned research institution, and it offers a variety of free online courses through its OpenEdX platform. Courses include computer science, engineering, and social sciences.
https://online.stanford.edu/explore
*4. University of California, Berkeley*
UC Berkeley is a top public research university, and it offers a range of free online courses in subjects such as computer science, data science, and business through its edX platform.
https://www.edx.org/school/uc-berkeleyx
*5. California Institute of Technology (Caltech)*
Caltech is a renowned institution in the field of science and engineering, and it offers a range of free online courses through its CaltechX platform. Courses include astrophysics, quantum mechanics, and more.
https://onlineeducation.caltech.edu/
React ❤️ for more
*1. Harvard University*
Harvard University is one of the world’s most prestigious universities, and it offers a wide range of free online courses through its HarvardX program. Courses range from computer science and business to humanities and social sciences.
https://pll.harvard.edu/catalog/free
*2. Massachusetts Institute of Technology (MIT)*
MIT is a renowned institution in the field of technology, and it offers free online courses in engineering, computer science, data science, and more through its OpenCourseWare platform.
https://ocw.mit.edu/search/
*3. Stanford University*
Stanford University is a world-renowned research institution, and it offers a variety of free online courses through its OpenEdX platform. Courses include computer science, engineering, and social sciences.
https://online.stanford.edu/explore
*4. University of California, Berkeley*
UC Berkeley is a top public research university, and it offers a range of free online courses in subjects such as computer science, data science, and business through its edX platform.
https://www.edx.org/school/uc-berkeleyx
*5. California Institute of Technology (Caltech)*
Caltech is a renowned institution in the field of science and engineering, and it offers a range of free online courses through its CaltechX platform. Courses include astrophysics, quantum mechanics, and more.
https://onlineeducation.caltech.edu/
React ❤️ for more
❤6👍1
Forwarded from Artificial Intelligence
𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 & 𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝘁𝗼 𝗟𝗮𝗻𝗱 𝗧𝗼𝗽 𝗝𝗼𝗯𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn.
It’s part of their Career Essentials program designed to make you job-ready with real-world AI skills.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jY0cwB
This certification will boost your resume✅️
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn.
It’s part of their Career Essentials program designed to make you job-ready with real-world AI skills.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jY0cwB
This certification will boost your resume✅️
Here are 8 concise tips to help you ace a technical AI engineering interview:
𝟭. 𝗘𝘅𝗽𝗹𝗮𝗶𝗻 𝗟𝗟𝗠 𝗳𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀 - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.
𝟮. 𝗗𝗶𝘀𝗰𝘂𝘀𝘀 𝗽𝗿𝗼𝗺𝗽𝘁 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.
𝟯. 𝗦𝗵𝗮𝗿𝗲 𝗟𝗟𝗠 𝗽𝗿𝗼𝗷𝗲𝗰𝘁 𝗲𝘅𝗮𝗺𝗽𝗹𝗲𝘀 - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.
𝟰. 𝗦𝘁𝗮𝘆 𝘂𝗽𝗱𝗮𝘁𝗲𝗱 𝗼𝗻 𝗿𝗲𝘀𝗲𝗮𝗿𝗰𝗵 - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.
𝟱. 𝗗𝗶𝘃𝗲 𝗶𝗻𝘁𝗼 𝗺𝗼𝗱𝗲𝗹 𝗮𝗿𝗰𝗵𝗶𝘁𝗲𝗰𝘁𝘂𝗿𝗲𝘀 - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.
𝟲. 𝗗𝗶𝘀𝗰𝘂𝘀𝘀 𝗳𝗶𝗻𝗲-𝘁𝘂𝗻𝗶𝗻𝗴 𝘁𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀 - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.
𝟳. 𝗗𝗲𝗺𝗼𝗻𝘀𝘁𝗿𝗮𝘁𝗲 𝗽𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝗼𝗻 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗲𝘅𝗽𝗲𝗿𝘁𝗶𝘀𝗲 - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.
𝟴. 𝗔𝘀𝗸 𝘁𝗵𝗼𝘂𝗴𝗵𝘁𝗳𝘂𝗹 𝗾𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.
Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
𝟭. 𝗘𝘅𝗽𝗹𝗮𝗶𝗻 𝗟𝗟𝗠 𝗳𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀 - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.
𝟮. 𝗗𝗶𝘀𝗰𝘂𝘀𝘀 𝗽𝗿𝗼𝗺𝗽𝘁 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.
𝟯. 𝗦𝗵𝗮𝗿𝗲 𝗟𝗟𝗠 𝗽𝗿𝗼𝗷𝗲𝗰𝘁 𝗲𝘅𝗮𝗺𝗽𝗹𝗲𝘀 - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.
𝟰. 𝗦𝘁𝗮𝘆 𝘂𝗽𝗱𝗮𝘁𝗲𝗱 𝗼𝗻 𝗿𝗲𝘀𝗲𝗮𝗿𝗰𝗵 - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.
𝟱. 𝗗𝗶𝘃𝗲 𝗶𝗻𝘁𝗼 𝗺𝗼𝗱𝗲𝗹 𝗮𝗿𝗰𝗵𝗶𝘁𝗲𝗰𝘁𝘂𝗿𝗲𝘀 - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.
𝟲. 𝗗𝗶𝘀𝗰𝘂𝘀𝘀 𝗳𝗶𝗻𝗲-𝘁𝘂𝗻𝗶𝗻𝗴 𝘁𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀 - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.
𝟳. 𝗗𝗲𝗺𝗼𝗻𝘀𝘁𝗿𝗮𝘁𝗲 𝗽𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝗼𝗻 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗲𝘅𝗽𝗲𝗿𝘁𝗶𝘀𝗲 - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.
𝟴. 𝗔𝘀𝗸 𝘁𝗵𝗼𝘂𝗴𝗵𝘁𝗳𝘂𝗹 𝗾𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.
Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
👍1
𝟱 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝗸𝘆𝗿𝗼𝗰𝗸𝗲𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Whether you’re a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FdLMcv
Gain the skills to manage analytics projects✅️
Whether you’re a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FdLMcv
Gain the skills to manage analytics projects✅️
Breaking into Data Science doesn’t need to be complicated.
If you’re just starting out,
Here’s how to simplify your approach:
Avoid:
🚫 Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
🚫 Spending months on theoretical concepts without hands-on practice.
🚫 Overloading your resume with keywords instead of impactful projects.
🚫 Believing you need a Ph.D. to break into the field.
Instead:
✅ Start with Python or R—focus on mastering one language first.
✅ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
✅ Dive into a simple machine learning model (like linear regression) to understand the basics.
✅ Solve real-world problems with open datasets and share them in a portfolio.
✅ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
If you’re just starting out,
Here’s how to simplify your approach:
Avoid:
🚫 Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
🚫 Spending months on theoretical concepts without hands-on practice.
🚫 Overloading your resume with keywords instead of impactful projects.
🚫 Believing you need a Ph.D. to break into the field.
Instead:
✅ Start with Python or R—focus on mastering one language first.
✅ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
✅ Dive into a simple machine learning model (like linear regression) to understand the basics.
✅ Solve real-world problems with open datasets and share them in a portfolio.
✅ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
👍4
𝟯𝟬+ 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗯𝘆 𝗛𝗣 𝗟𝗜𝗙𝗘 𝘁𝗼 𝗦𝘂𝗽𝗲𝗿𝗰𝗵𝗮𝗿𝗴𝗲 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍
Whether you’re a student, jobseeker, aspiring entrepreneur, or working professional—HP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free📊🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/45ci02k
Join millions of learners worldwide who are already upgrading their skillsets through HP LIFE✅️
Whether you’re a student, jobseeker, aspiring entrepreneur, or working professional—HP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free📊🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/45ci02k
Join millions of learners worldwide who are already upgrading their skillsets through HP LIFE✅️
Important questions to ace your machine learning interview with an approach to answer:
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
Data Science Interview Resources
👇👇
https://topmate.io/coding/914624
Like for more 😄
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
Data Science Interview Resources
👇👇
https://topmate.io/coding/914624
Like for more 😄
❤2
Forwarded from Python Projects & Resources
𝟲 𝗙𝗥𝗘𝗘 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗙𝘂𝘁𝘂𝗿𝗲-𝗣𝗿𝗼𝗼𝗳 𝗦𝗸𝗶𝗹𝗹𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!🚀
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FcwrZK
Enjoy Learning ✅️
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!🚀
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FcwrZK
Enjoy Learning ✅️
Complete roadmap to learn Python and Data Structures & Algorithms (DSA) in 2 months
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstra’s algorithm for shortest path
- Kruskal’s and Prim’s algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING 👍👍
### Week 1: Introduction to Python
Day 1-2: Basics of Python
- Python setup (installation and IDE setup)
- Basic syntax, variables, and data types
- Operators and expressions
Day 3-4: Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
Day 5-6: Functions and Modules
- Function definitions, parameters, and return values
- Built-in functions and importing modules
Day 7: Practice Day
- Solve basic problems on platforms like HackerRank or LeetCode
### Week 2: Advanced Python Concepts
Day 8-9: Data Structures in Python
- Lists, tuples, sets, and dictionaries
- List comprehensions and generator expressions
Day 10-11: Strings and File I/O
- String manipulation and methods
- Reading from and writing to files
Day 12-13: Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance, polymorphism, encapsulation
Day 14: Practice Day
- Solve intermediate problems on coding platforms
### Week 3: Introduction to Data Structures
Day 15-16: Arrays and Linked Lists
- Understanding arrays and their operations
- Singly and doubly linked lists
Day 17-18: Stacks and Queues
- Implementation and applications of stacks
- Implementation and applications of queues
Day 19-20: Recursion
- Basics of recursion and solving problems using recursion
- Recursive vs iterative solutions
Day 21: Practice Day
- Solve problems related to arrays, linked lists, stacks, and queues
### Week 4: Fundamental Algorithms
Day 22-23: Sorting Algorithms
- Bubble sort, selection sort, insertion sort
- Merge sort and quicksort
Day 24-25: Searching Algorithms
- Linear search and binary search
- Applications and complexity analysis
Day 26-27: Hashing
- Hash tables and hash functions
- Collision resolution techniques
Day 28: Practice Day
- Solve problems on sorting, searching, and hashing
### Week 5: Advanced Data Structures
Day 29-30: Trees
- Binary trees, binary search trees (BST)
- Tree traversals (in-order, pre-order, post-order)
Day 31-32: Heaps and Priority Queues
- Understanding heaps (min-heap, max-heap)
- Implementing priority queues using heaps
Day 33-34: Graphs
- Representation of graphs (adjacency matrix, adjacency list)
- Depth-first search (DFS) and breadth-first search (BFS)
Day 35: Practice Day
- Solve problems on trees, heaps, and graphs
### Week 6: Advanced Algorithms
Day 36-37: Dynamic Programming
- Introduction to dynamic programming
- Solving common DP problems (e.g., Fibonacci, knapsack)
Day 38-39: Greedy Algorithms
- Understanding greedy strategy
- Solving problems using greedy algorithms
Day 40-41: Graph Algorithms
- Dijkstra’s algorithm for shortest path
- Kruskal’s and Prim’s algorithms for minimum spanning tree
Day 42: Practice Day
- Solve problems on dynamic programming, greedy algorithms, and advanced graph algorithms
### Week 7: Problem Solving and Optimization
Day 43-44: Problem-Solving Techniques
- Backtracking, bit manipulation, and combinatorial problems
Day 45-46: Practice Competitive Programming
- Participate in contests on platforms like Codeforces or CodeChef
Day 47-48: Mock Interviews and Coding Challenges
- Simulate technical interviews
- Focus on time management and optimization
Day 49: Review and Revise
- Go through notes and previously solved problems
- Identify weak areas and work on them
### Week 8: Final Stretch and Project
Day 50-52: Build a Project
- Use your knowledge to build a substantial project in Python involving DSA concepts
Day 53-54: Code Review and Testing
- Refactor your project code
- Write tests for your project
Day 55-56: Final Practice
- Solve problems from previous contests or new challenging problems
Day 57-58: Documentation and Presentation
- Document your project and prepare a presentation or a detailed report
Day 59-60: Reflection and Future Plan
- Reflect on what you've learned
- Plan your next steps (advanced topics, more projects, etc.)
Best DSA RESOURCES: https://topmate.io/coding/886874
Credits: https://t.iss.one/free4unow_backup
ENJOY LEARNING 👍👍
👍4
Forwarded from Python Projects & Resources
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗜𝗧 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗬𝗼𝘂 𝗖𝗮𝗻 𝗧𝗮𝗸𝗲 𝗢𝗻𝗹𝗶𝗻𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍
MIT is known for world-class education—but you don’t need to walk its halls to access its knowledge👨💻📌
Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world💻🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43eM8I2
Let’s explore 5 of the best free courses MIT has to offer✅️
MIT is known for world-class education—but you don’t need to walk its halls to access its knowledge👨💻📌
Thanks to edX, anyone can enroll in these free MIT-certified courses from anywhere in the world💻🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43eM8I2
Let’s explore 5 of the best free courses MIT has to offer✅️
Use Chat GPT to prepare for your next Interview
This could be the most helpful thing for people aspiring for new jobs.
A few prompts that can help you here are:
💡Prompt 1: Here is a Job description of a job I am looking to apply for. Can you tell me what skills and questions should I prepare for? {Paste JD}
💡Prompt 2: Here is my resume. Can you tell me what optimization I can do to make it more likely to get selected for this interview? {Paste Resume in text}
💡Prompt 3: Act as an Interviewer for the role of a {product manager} at {Company}. Ask me 5 questions one by one, wait for my response, and then tell me how I did. You should give feedback in the following format: What was good, where are the gaps, and how to address the gaps?
💡Prompt 4: I am interviewing for this job given in the JD. Can you help me understand the company, its role, its products, main competitors, and challenges for the company?
💡Prompt 5: What are the few questions I should ask at the end of the interview which can help me learn about the culture of the company?
Free book to master ChatGPT: https://t.iss.one/InterviewBooks/166
ENJOY LEARNING 👍👍
This could be the most helpful thing for people aspiring for new jobs.
A few prompts that can help you here are:
💡Prompt 1: Here is a Job description of a job I am looking to apply for. Can you tell me what skills and questions should I prepare for? {Paste JD}
💡Prompt 2: Here is my resume. Can you tell me what optimization I can do to make it more likely to get selected for this interview? {Paste Resume in text}
💡Prompt 3: Act as an Interviewer for the role of a {product manager} at {Company}. Ask me 5 questions one by one, wait for my response, and then tell me how I did. You should give feedback in the following format: What was good, where are the gaps, and how to address the gaps?
💡Prompt 4: I am interviewing for this job given in the JD. Can you help me understand the company, its role, its products, main competitors, and challenges for the company?
💡Prompt 5: What are the few questions I should ask at the end of the interview which can help me learn about the culture of the company?
Free book to master ChatGPT: https://t.iss.one/InterviewBooks/166
ENJOY LEARNING 👍👍
👍4❤1
𝗙𝗿𝗲𝗲 𝗢𝗿𝗮𝗰𝗹𝗲 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍
Here’s your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course — absolutely FREE!💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FfFOrC
No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!✅️
Here’s your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course — absolutely FREE!💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FfFOrC
No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!✅️
👍1
Forwarded from Artificial Intelligence
𝟳+ 𝗙𝗿𝗲𝗲 𝗚𝗼𝗼𝗴𝗹𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿😍
Here’s your golden chance to upskill with free, industry-recognized certifications from Google—all without spending a rupee!💰📌
These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and more⬇️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3H2YJX7
Tag them or share this post!✅️
Here’s your golden chance to upskill with free, industry-recognized certifications from Google—all without spending a rupee!💰📌
These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and more⬇️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3H2YJX7
Tag them or share this post!✅️
👍1
Technical Questions Wipro may ask on their interviews
1. Data Structures and Algorithms:
- "Can you explain the difference between an array and a linked list? When would you use one over the other in a real-world application?"
- "Write code to implement a binary search algorithm."
2. Programming Languages:
- "What is the difference between Java and C++? Can you provide an example of a situation where you would prefer one language over the other?"
- "Write a program in your preferred programming language to reverse a string."
3. Database and SQL:
- "Explain the ACID properties in the context of database transactions."
- "Write an SQL query to retrieve all records from a 'customers' table where the 'country' column is 'India'."
4. Networking:
- "What is the difference between TCP and UDP? When would you choose one over the other for a specific application?"
- "Explain the concept of DNS (Domain Name System) and how it works."
5. System Design:
- "Design a simple online messaging system. What components would you include, and how would they interact?"
- "How would you ensure the scalability and fault tolerance of a web service or application?"
1. Data Structures and Algorithms:
- "Can you explain the difference between an array and a linked list? When would you use one over the other in a real-world application?"
- "Write code to implement a binary search algorithm."
2. Programming Languages:
- "What is the difference between Java and C++? Can you provide an example of a situation where you would prefer one language over the other?"
- "Write a program in your preferred programming language to reverse a string."
3. Database and SQL:
- "Explain the ACID properties in the context of database transactions."
- "Write an SQL query to retrieve all records from a 'customers' table where the 'country' column is 'India'."
4. Networking:
- "What is the difference between TCP and UDP? When would you choose one over the other for a specific application?"
- "Explain the concept of DNS (Domain Name System) and how it works."
5. System Design:
- "Design a simple online messaging system. What components would you include, and how would they interact?"
- "How would you ensure the scalability and fault tolerance of a web service or application?"
👍4
Forwarded from Artificial Intelligence
𝟲 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻, 𝗦𝗤𝗟 & 𝗠𝗟 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Looking to break into data analytics, data science, or machine learning this year?💻
These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4ksUTFi
Enjoy Learning ✅️
Looking to break into data analytics, data science, or machine learning this year?💻
These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4ksUTFi
Enjoy Learning ✅️
Tools Every AI Engineer Should Know
1. Data Science Tools
Python: Preferred language with libraries like NumPy, Pandas, Scikit-learn.
R: Ideal for statistical analysis and data visualization.
Jupyter Notebook: Interactive coding environment for Python and R.
MATLAB: Used for mathematical modeling and algorithm development.
RapidMiner: Drag-and-drop platform for machine learning workflows.
KNIME: Open-source analytics platform for data integration and analysis.
2. Machine Learning Tools
Scikit-learn: Comprehensive library for traditional ML algorithms.
XGBoost & LightGBM: Specialized tools for gradient boosting.
TensorFlow: Open-source framework for ML and DL.
PyTorch: Popular DL framework with a dynamic computation graph.
H2O.ai: Scalable platform for ML and AutoML.
Auto-sklearn: AutoML for automating the ML pipeline.
3. Deep Learning Tools
Keras: User-friendly high-level API for building neural networks.
PyTorch: Excellent for research and production in DL.
TensorFlow: Versatile for both research and deployment.
ONNX: Open format for model interoperability.
OpenCV: For image processing and computer vision.
Hugging Face: Focused on natural language processing.
4. Data Engineering Tools
Apache Hadoop: Framework for distributed storage and processing.
Apache Spark: Fast cluster-computing framework.
Kafka: Distributed streaming platform.
Airflow: Workflow automation tool.
Fivetran: ETL tool for data integration.
dbt: Data transformation tool using SQL.
5. Data Visualization Tools
Tableau: Drag-and-drop BI tool for interactive dashboards.
Power BI: Microsoft’s BI platform for data analysis and visualization.
Matplotlib & Seaborn: Python libraries for static and interactive plots.
Plotly: Interactive plotting library with Dash for web apps.
D3.js: JavaScript library for creating dynamic web visualizations.
6. Cloud Platforms
AWS: Services like SageMaker for ML model building.
Google Cloud Platform (GCP): Tools like BigQuery and AutoML.
Microsoft Azure: Azure ML Studio for ML workflows.
IBM Watson: AI platform for custom model development.
7. Version Control and Collaboration Tools
Git: Version control system.
GitHub/GitLab: Platforms for code sharing and collaboration.
Bitbucket: Version control for teams.
8. Other Essential Tools
Docker: For containerizing applications.
Kubernetes: Orchestration of containerized applications.
MLflow: Experiment tracking and deployment.
Weights & Biases (W&B): Experiment tracking and collaboration.
Pandas Profiling: Automated data profiling.
BigQuery/Athena: Serverless data warehousing tools.
Mastering these tools will ensure you are well-equipped to handle various challenges across the AI lifecycle.
#artificialintelligence
1. Data Science Tools
Python: Preferred language with libraries like NumPy, Pandas, Scikit-learn.
R: Ideal for statistical analysis and data visualization.
Jupyter Notebook: Interactive coding environment for Python and R.
MATLAB: Used for mathematical modeling and algorithm development.
RapidMiner: Drag-and-drop platform for machine learning workflows.
KNIME: Open-source analytics platform for data integration and analysis.
2. Machine Learning Tools
Scikit-learn: Comprehensive library for traditional ML algorithms.
XGBoost & LightGBM: Specialized tools for gradient boosting.
TensorFlow: Open-source framework for ML and DL.
PyTorch: Popular DL framework with a dynamic computation graph.
H2O.ai: Scalable platform for ML and AutoML.
Auto-sklearn: AutoML for automating the ML pipeline.
3. Deep Learning Tools
Keras: User-friendly high-level API for building neural networks.
PyTorch: Excellent for research and production in DL.
TensorFlow: Versatile for both research and deployment.
ONNX: Open format for model interoperability.
OpenCV: For image processing and computer vision.
Hugging Face: Focused on natural language processing.
4. Data Engineering Tools
Apache Hadoop: Framework for distributed storage and processing.
Apache Spark: Fast cluster-computing framework.
Kafka: Distributed streaming platform.
Airflow: Workflow automation tool.
Fivetran: ETL tool for data integration.
dbt: Data transformation tool using SQL.
5. Data Visualization Tools
Tableau: Drag-and-drop BI tool for interactive dashboards.
Power BI: Microsoft’s BI platform for data analysis and visualization.
Matplotlib & Seaborn: Python libraries for static and interactive plots.
Plotly: Interactive plotting library with Dash for web apps.
D3.js: JavaScript library for creating dynamic web visualizations.
6. Cloud Platforms
AWS: Services like SageMaker for ML model building.
Google Cloud Platform (GCP): Tools like BigQuery and AutoML.
Microsoft Azure: Azure ML Studio for ML workflows.
IBM Watson: AI platform for custom model development.
GitHub/GitLab: Platforms for code sharing and collaboration.
Bitbucket: Version control for teams.
8. Other Essential Tools
Docker: For containerizing applications.
Kubernetes: Orchestration of containerized applications.
MLflow: Experiment tracking and deployment.
Weights & Biases (W&B): Experiment tracking and collaboration.
Pandas Profiling: Automated data profiling.
BigQuery/Athena: Serverless data warehousing tools.
Mastering these tools will ensure you are well-equipped to handle various challenges across the AI lifecycle.
#artificialintelligence
👍3
Forwarded from Python Projects & Resources
𝟱 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗣𝘆𝘁𝗵𝗼𝗻 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗔𝗱𝗱 𝘁𝗼 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Looking to land an internship, secure a tech job, or start freelancing in 2025?👨💻
Python projects are one of the best ways to showcase your skills and stand out in today’s competitive job market🗣📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kvrfiL
Stand out in today’s competitive job market✅️
Looking to land an internship, secure a tech job, or start freelancing in 2025?👨💻
Python projects are one of the best ways to showcase your skills and stand out in today’s competitive job market🗣📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kvrfiL
Stand out in today’s competitive job market✅️
👍2
LangChain Crash Course -Greg Lim, 2023.pdf
7.5 MB
LangChain Crash Course
Greg Lim, 2023
Greg Lim, 2023
👍4❤2