Coding & Data Science Resources
30.4K subscribers
334 photos
515 files
337 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ฆ๐—ฐ๐—ฟ๐—ฎ๐˜๐—ฐ๐—ต ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—œ๐—ป๐˜ƒ๐—ฒ๐˜€๐˜๐—บ๐—ฒ๐—ป๐˜ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐—ฒ๐—ฑ!)๐Ÿ˜

If youโ€™re serious about starting your tech journey, Python is one of the best languages to master๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ‘จโ€๐ŸŽ“

Iโ€™ve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects โ€” absolutely FREE๐Ÿ”ฅ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lOVqmb

Start today, and youโ€™ll thank yourself tomorrow.โœ…๏ธ
๐Ÿ‘2
โœ… Become a Full Stack Developer for FREE:

HTML โ†’ https://html.spec.whatwg.org/multipage/

CSS3 โ†’ https://web.dev/learn/css/

Javascript โ†’ https://LearnJavaScript.online

React โ†’ https://reactjs.org

Python โ†’ https://python.org

Java โ†’ https://java67.com

Ruby โ†’ https://gorails.com

SQL โ†’ https://SQLbolt.com

MongoDB โ†’ https://learn.mongodb.com

AWS โ†’ https://aws.amazon.com/training

Azure โ†’ https://learn.microsoft.com/en-us/training

Git & GitHub โ†’ https://LearnGitBranching.js.org

Google Cloud โ†’ https://cloud.google.com/edu
๐Ÿ‘5
WHATS AN ARRAY?
๐Ÿ‘4โค2๐Ÿ”ฅ1
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Ever wondered how machines describe images in words?๐Ÿ’ป

Want to get hands-on with cutting-edge AI and computer vision โ€” for FREE?๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42FaT0Y

๐ŸŽฏ Start Learning AI for FREE
๐Ÿ‘1
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘2
Forwarded from Generative AI
๐Ÿณ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

๐Ÿ’ผ Want to Upgrade Your Resume in 2025 โ€” Without Spending a Dime?๐Ÿ’ซ

Whether youโ€™re in tech, marketing, business, or just looking to stand out โ€” adding high-quality certifications to your resume can make a huge difference๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4iE6uzT

The best part? You donโ€™t need to spend any money to do it๐Ÿ’ฐ๐Ÿ“Œ
๐Ÿ‘1
Platforms to learn Data Science ๐Ÿ‘†
โค2
Forwarded from Coding & AI Resources
๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Whether youโ€™re a student, fresher, or professional looking to upskill โ€” Microsoft has dropped a series of completely free courses to get you started.

Learn SQL ,Power BI & More In 2025 

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/42FxnyM

Enroll For FREE & Get Certified ๐ŸŽ“
โค1
If you're into deep learning, then you know that students usually one of the two paths:

- Computer vision
- Natural language processing (NLP)

If you're into NLP, here are 5 fundamental concepts you should know:

Before we start, What is NLP?

Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the interaction between computers and humans through language.

It enables machines to understand, interpret, and respond to human language in a way that is both meaningful and useful.

Data scientists need NLP to analyze, process, and generate insights from large volumes of textual data, aiding in tasks ranging from sentiment analysis to automated summarization.

Tokenization

Tokenization involves breaking down text into smaller units, such as words or phrases. This is the first step in preprocessing textual data for further analysis or NLP applications.

Part-of-Speech Tagging:

This process involves identifying the part of speech for each word in a sentence (e.g., noun, verb, adjective). It is crucial for various NLP tasks that require understanding the grammatical structure of text.

Stemming and Lemmatization

These techniques reduce words to their base or root form. Stemming cuts off prefixes and suffixes, while lemmatization considers the morphological analysis of the words, leading to more accurate results.

Named Entity Recognition (NER)

NER identifies and classifies named entities in text into predefined categories such as the names of persons, organizations, locations, etc. It's essential for tasks like data extraction from documents and content classification.

Sentiment Analysis

This technique determines the emotional tone behind a body of text. It's widely used in business and social media monitoring to gauge public opinion and customer sentiment.
๐Ÿ‘2๐Ÿ‘1
Forwarded from Generative AI
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ผ ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น ๐—œ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Whether youโ€™re a student, aspiring data analyst, software enthusiast, or just curious about AI, nowโ€™s the perfect time to dive in.

These 6 beginner-friendly and completely free AI courses from top institutions like Google, IBM, Harvard, and more

๐—Ÿ๐—ถ๐—ป๐—ธ:-๐Ÿ‘‡

https://pdlink.in/4d0SrTG

Enroll for FREE & Get Certified ๐ŸŽ“
Are you looking to become a machine learning engineer?

I created a free and comprehensive roadmap. Let's go through this post and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, itโ€™s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘
๐Ÿ‘3
Forwarded from Artificial Intelligence
๐—Ÿ๐—ผ๐—ผ๐—ธ๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐˜†๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ท๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜† ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ?๐Ÿ˜

๐Ÿ“Š These free courses are designed for learners at all levels, whether youโ€™re a beginner or an advanced professional๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/41Y1WQm

Donโ€™t Wait! Start your Learning Journey Todayโœ…๏ธ
๐Ÿ‘2
Forwarded from Artificial Intelligence
๐——๐—ฒ๐—น๐—ผ๐—ถ๐˜๐˜๐—ฒ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐Ÿ˜

If youโ€™re eager to build real skills in data analytics before landing your first role, Deloitte is giving you a golden opportunityโ€”completely free!

๐Ÿ’ก No prior experience required
๐Ÿ“š Ideal for students, freshers, and aspiring data analysts
โฐ Self-paced โ€” complete at your convenience

๐Ÿ”— ๐—”๐—ฝ๐—ฝ๐—น๐˜† ๐—›๐—ฒ๐—ฟ๐—ฒ (๐—™๐—ฟ๐—ฒ๐—ฒ)๐Ÿ‘‡:- 

https://pdlink.in/4iKcgA4

Enroll for FREE & Get Certified ๐ŸŽ“
Data Science Learning Plan

Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)

Step 2: Python for Data Science (Basics and Libraries)

Step 3: Data Manipulation and Analysis (Pandas, NumPy)

Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)

Step 5: Databases and SQL for Data Retrieval

Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)

Step 7: Data Cleaning and Preprocessing

Step 8: Feature Engineering and Selection

Step 9: Model Evaluation and Tuning

Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)

Step 11: Working with Big Data (Hadoop, Spark)

Step 12: Building Data Science Projects and Portfolio

Data Science Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like for more ๐Ÿ˜„
๐Ÿ‘2
Forwarded from Artificial Intelligence
๐Ÿฒ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ ๐—ข๐˜‚๐˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

As competition heats up across every industry, standing out to recruiters is more important than ever๐Ÿ“„๐Ÿ“Œ

The best part? You donโ€™t need to spend a rupee to do it!๐Ÿ’ฐ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4m0nNOD

๐Ÿ‘‰ Start learning. Start standing outโœ…๏ธ
๐Ÿ‘1