Coding & Data Science Resources
30.4K subscribers
334 photos
515 files
337 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
20 Python Libraries You Aren't Using (But Should).pdf
4.1 MB
20 Python Libraries You
Arenโ€™t Using (But Should)

Caleb Hattingh, 2016
RW3.pdf
796.6 KB
Classification notes
Advice from 25 Amazing Data Scientist.pdf
2.8 MB
Resource Pdf :- Advice from 25 Amazing Data Scientists.

Source :- Jake Klamka
pandas.pdf
548.9 KB
Data_Science Pandas
๐Ÿ‘2๐Ÿ”ฅ1
Machine learning powers so many things around us โ€“ from recommendation systems to self-driving cars!

But understanding the different types of algorithms can be tricky.

This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

๐Ÿ. ๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

๐’๐จ๐ฆ๐ž ๐œ๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Linear Regression โ€“ For predicting continuous values, like house prices.
โžก๏ธ Logistic Regression โ€“ For predicting categories, like spam or not spam.
โžก๏ธ Decision Trees โ€“ For making decisions in a step-by-step way.
โžก๏ธ K-Nearest Neighbors (KNN) โ€“ For finding similar data points.
โžก๏ธ Random Forests โ€“ A collection of decision trees for better accuracy.
โžก๏ธ Neural Networks โ€“ The foundation of deep learning, mimicking the human brain.

๐Ÿ. ๐”๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
With unsupervised learning, the model explores patterns in data that doesnโ€™t have any labels. It finds hidden structures or groupings.

๐’๐จ๐ฆ๐ž ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐š๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ K-Means Clustering โ€“ For grouping data into clusters.
โžก๏ธ Hierarchical Clustering โ€“ For building a tree of clusters.
โžก๏ธ Principal Component Analysis (PCA) โ€“ For reducing data to its most important parts.
โžก๏ธ Autoencoders โ€“ For finding simpler representations of data.

๐Ÿ‘. ๐’๐ž๐ฆ๐ข-๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

๐‚๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ž๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Label Propagation โ€“ For spreading labels through connected data points.
โžก๏ธ Semi-Supervised SVM โ€“ For combining labeled and unlabeled data.
โžก๏ธ Graph-Based Methods โ€“ For using graph structures to improve learning.

๐Ÿ’. ๐‘๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐ 
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

๐๐จ๐ฉ๐ฎ๐ฅ๐š๐ซ ๐ซ๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐š๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐œ๐ฅ๐ฎ๐๐ž:

โžก๏ธ Q-Learning โ€“ For learning the best actions over time.
โžก๏ธ Deep Q-Networks (DQN) โ€“ Combining Q-learning with deep learning.
โžก๏ธ Policy Gradient Methods โ€“ For learning policies directly.
โžก๏ธ Proximal Policy Optimization (PPO) โ€“ For stable and effective learning.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
Improve your coding logic ๐Ÿ‘†