Essential Math for AI.pdf
18.1 MB
Essential Math for AI
Hala Nelson, 2022
Hala Nelson, 2022
Natural Language Processing with Transformers.pdf
6.4 MB
Natural Language Processing with Transformers
Lewis Tunstall, 2022
Lewis Tunstall, 2022
Cracking Codes with Python.pdf
7.6 MB
Cracking Codes with Python
Al Sweigart, 2018
Al Sweigart, 2018
hands-on-data-science.pdf
15.3 MB
Hands-On Data Science and Python Machine Learning
Frank Kane, 2017
Frank Kane, 2017
Synthetic Data for Machine Learning.pdf
7.7 MB
Synthetic Data for Machine Learning
Abdulrahman Kerim, 2023
Abdulrahman Kerim, 2023
sql.pdf_20231108_011916_0000.pdf
3.9 MB
SQL Practice Questions with Answers
Those who are at beginner and intermediate level in sql should try to solve all these question
Those who are at beginner and intermediate level in sql should try to solve all these question
๐3โค1๐ฑ1
20 Python Libraries You Aren't Using (But Should).pdf
4.1 MB
20 Python Libraries You
Arenโt Using (But Should)
Caleb Hattingh, 2016
Arenโt Using (But Should)
Caleb Hattingh, 2016
RW3.pdf
796.6 KB
Classification notes
Advice from 25 Amazing Data Scientist.pdf
2.8 MB
Resource Pdf :- Advice from 25 Amazing Data Scientists.
Source :- Jake Klamka
Source :- Jake Klamka
pandas.pdf
548.9 KB
Data_Science Pandas
๐2๐ฅ1
Machine learning powers so many things around us โ from recommendation systems to self-driving cars!
But understanding the different types of algorithms can be tricky.
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
๐. ๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
๐๐จ๐ฆ๐ ๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Linear Regression โ For predicting continuous values, like house prices.
โก๏ธ Logistic Regression โ For predicting categories, like spam or not spam.
โก๏ธ Decision Trees โ For making decisions in a step-by-step way.
โก๏ธ K-Nearest Neighbors (KNN) โ For finding similar data points.
โก๏ธ Random Forests โ A collection of decision trees for better accuracy.
โก๏ธ Neural Networks โ The foundation of deep learning, mimicking the human brain.
๐. ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
With unsupervised learning, the model explores patterns in data that doesnโt have any labels. It finds hidden structures or groupings.
๐๐จ๐ฆ๐ ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ K-Means Clustering โ For grouping data into clusters.
โก๏ธ Hierarchical Clustering โ For building a tree of clusters.
โก๏ธ Principal Component Analysis (PCA) โ For reducing data to its most important parts.
โก๏ธ Autoencoders โ For finding simpler representations of data.
๐. ๐๐๐ฆ๐ข-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Label Propagation โ For spreading labels through connected data points.
โก๏ธ Semi-Supervised SVM โ For combining labeled and unlabeled data.
โก๏ธ Graph-Based Methods โ For using graph structures to improve learning.
๐. ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
๐๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ซ๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Q-Learning โ For learning the best actions over time.
โก๏ธ Deep Q-Networks (DQN) โ Combining Q-learning with deep learning.
โก๏ธ Policy Gradient Methods โ For learning policies directly.
โก๏ธ Proximal Policy Optimization (PPO) โ For stable and effective learning.
ENJOY LEARNING ๐๐
But understanding the different types of algorithms can be tricky.
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
๐. ๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
๐๐จ๐ฆ๐ ๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Linear Regression โ For predicting continuous values, like house prices.
โก๏ธ Logistic Regression โ For predicting categories, like spam or not spam.
โก๏ธ Decision Trees โ For making decisions in a step-by-step way.
โก๏ธ K-Nearest Neighbors (KNN) โ For finding similar data points.
โก๏ธ Random Forests โ A collection of decision trees for better accuracy.
โก๏ธ Neural Networks โ The foundation of deep learning, mimicking the human brain.
๐. ๐๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
With unsupervised learning, the model explores patterns in data that doesnโt have any labels. It finds hidden structures or groupings.
๐๐จ๐ฆ๐ ๐ฉ๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ฎ๐ง๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ K-Means Clustering โ For grouping data into clusters.
โก๏ธ Hierarchical Clustering โ For building a tree of clusters.
โก๏ธ Principal Component Analysis (PCA) โ For reducing data to its most important parts.
โก๏ธ Autoencoders โ For finding simpler representations of data.
๐. ๐๐๐ฆ๐ข-๐๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐๐๐๐ซ๐ง๐ข๐ง๐
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
๐๐จ๐ฆ๐ฆ๐จ๐ง ๐ฌ๐๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐๐ซ๐ฏ๐ข๐ฌ๐๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Label Propagation โ For spreading labels through connected data points.
โก๏ธ Semi-Supervised SVM โ For combining labeled and unlabeled data.
โก๏ธ Graph-Based Methods โ For using graph structures to improve learning.
๐. ๐๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐๐๐๐ซ๐ง๐ข๐ง๐
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
๐๐จ๐ฉ๐ฎ๐ฅ๐๐ซ ๐ซ๐๐ข๐ง๐๐จ๐ซ๐๐๐ฆ๐๐ง๐ญ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ๐ฌ ๐ข๐ง๐๐ฅ๐ฎ๐๐:
โก๏ธ Q-Learning โ For learning the best actions over time.
โก๏ธ Deep Q-Networks (DQN) โ Combining Q-learning with deep learning.
โก๏ธ Policy Gradient Methods โ For learning policies directly.
โก๏ธ Proximal Policy Optimization (PPO) โ For stable and effective learning.
ENJOY LEARNING ๐๐
๐3
๐ฅ5