Python Basics to Advanced Notesπ (1) (1).pdf
8.7 MB
π° Python From Scratch π
React β€οΈ for more free resources π
π€π€π€π€π€π€
React β€οΈ for more free resources π
π€π€π€π€π€π€
Expert Python Programming.pdf
4.3 MB
Expert Python Programming (2021)
100 likes = new books
100 likes = new books
hands-on-data-science.pdf
15.3 MB
Hands-On Data Science and Python Machine Learning
Frank Kane, 2017
Frank Kane, 2017
β€3π2
Scrap Image from bing using BeautifulSoup
sample response :
import requests
from bs4 import BeautifulSoup as BSP
def split_url(url):
return url.split('&')[0]
def get_image_urls(search_query):
url = f"https://cn.bing.com/images/search?q={search_query}&first=1&cw=1177&ch=678"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
rss = requests.get(url, headers=headers)
soup = BSP(rss.content, "html.parser")
all_img = []
for img in soup.find_all('img'):
img_url = img.get('src2')
if img_url and img_url.startswith('https://tse2.mm.bing.net/'):
img_url = split_url(img_url)
all_img.append(img_url)
return all_img
print(get_image_urls("cat"))
sample response :
['https://tse2.mm.bing.net/th?q=Cat+Portrait', ...']
π2
Most Important Python Topics for Data Analyst Interview:
#Basics of Python:
1. Data Types
2. Lists
3. Dictionaries
4. Control Structures:
- if-elif-else
- Loops
5. Functions
6. Practice basic FAQs questions, below mentioned are few examples:
- How to reverse a string in Python?
- How to find the largest/smallest number in a list?
- How to remove duplicates from a list?
- How to count the occurrences of each element in a list?
- How to check if a string is a palindrome?
#Pandas:
1. Pandas Data Structures (Series, DataFrame)
2. Creating and Manipulating DataFrames
3. Filtering and Selecting Data
4. Grouping and Aggregating Data
5. Handling Missing Values
6. Merging and Joining DataFrames
7. Adding and Removing Columns
8. Exploratory Data Analysis (EDA):
- Descriptive Statistics
- Data Visualization with Pandas (Line Plots, Bar Plots, Histograms)
- Correlation and Covariance
- Handling Duplicates
- Data Transformation
#Numpy:
1. NumPy Arrays
2. Array Operations:
- Creating Arrays
- Slicing and Indexing
- Arithmetic Operations
#Integration with Other Libraries:
1. Basic Data Visualization with Pandas (Line Plots, Bar Plots)
#Key Concepts to Revise:
1. Data Manipulation with Pandas and NumPy
2. Data Cleaning Techniques
3. File Handling (reading and writing CSV files, JSON files)
4. Handling Missing and Duplicate Values
5. Data Transformation (scaling, normalization)
6. Data Aggregation and Group Operations
7. Combining and Merging Datasets
#Basics of Python:
1. Data Types
2. Lists
3. Dictionaries
4. Control Structures:
- if-elif-else
- Loops
5. Functions
6. Practice basic FAQs questions, below mentioned are few examples:
- How to reverse a string in Python?
- How to find the largest/smallest number in a list?
- How to remove duplicates from a list?
- How to count the occurrences of each element in a list?
- How to check if a string is a palindrome?
#Pandas:
1. Pandas Data Structures (Series, DataFrame)
2. Creating and Manipulating DataFrames
3. Filtering and Selecting Data
4. Grouping and Aggregating Data
5. Handling Missing Values
6. Merging and Joining DataFrames
7. Adding and Removing Columns
8. Exploratory Data Analysis (EDA):
- Descriptive Statistics
- Data Visualization with Pandas (Line Plots, Bar Plots, Histograms)
- Correlation and Covariance
- Handling Duplicates
- Data Transformation
#Numpy:
1. NumPy Arrays
2. Array Operations:
- Creating Arrays
- Slicing and Indexing
- Arithmetic Operations
#Integration with Other Libraries:
1. Basic Data Visualization with Pandas (Line Plots, Bar Plots)
#Key Concepts to Revise:
1. Data Manipulation with Pandas and NumPy
2. Data Cleaning Techniques
3. File Handling (reading and writing CSV files, JSON files)
4. Handling Missing and Duplicate Values
5. Data Transformation (scaling, normalization)
6. Data Aggregation and Group Operations
7. Combining and Merging Datasets
π8β€2π₯2
Android_Programming_The_Big_Nerd_Ranch_Guide.epub
8.8 MB
Android Programming
Kristin Marsicano, 2022
Kristin Marsicano, 2022
Practical Deep Reinforcement Learning.pdf
8.4 MB
Practical Deep Reinforcement Learning with Python
Ivan Gridin, 2022
Ivan Gridin, 2022
Applied Machine Learning.pdf
4.7 MB
Applied Machine Learning Explainability Techniques
Aditya Bhattacharya, 2022
Aditya Bhattacharya, 2022
Machine Learning and Data Science .pdf
15.5 MB
Machine Learning and Data Science
Prateek Agrawal, 2022
Prateek Agrawal, 2022
β€6π1
Profound Python Libraries.epub
1.5 MB
Profound Python Libraries
Onder Teker, 2022
Onder Teker, 2022
20 Python Libraries You Aren't Using (But Should).pdf
4.1 MB
20 Python Libraries You
Arenβt Using (But Should)
Caleb Hattingh, 2016
Arenβt Using (But Should)
Caleb Hattingh, 2016
Python for Everybody.epub
4.9 MB
Python for Everybody
Charles R. Severance, 2023
Charles R. Severance, 2023
β€4π2
If you are :
- Depressed
- Sad
- Broken hearted
- Bored in everything
I suggest you follow this Amazing channel on Telegram!.
πππΎ
https://t.iss.one/trueminds
- Depressed
- Sad
- Broken hearted
- Bored in everything
I suggest you follow this Amazing channel on Telegram!.
πππΎ
https://t.iss.one/trueminds
π1