5. Data Science at the Command Line
Publisher: O'Reilly
jeroenjanssens.com/dsatcl/
10 Data Science Books
Publisher: O'Reilly
jeroenjanssens.com/dsatcl/
10 Data Science Books
Jeroenjanssens
Welcome | Data Science at the Command Line, 2e
This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. Youโll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, andโฆ
Coding & Data Science Resources
5. Data Science at the Command Line Publisher: O'Reilly jeroenjanssens.com/dsatcl/ 10 Data Science Books
6. Introduction to Probability for Data Science
Publisher: Michigan University
probability4datascience.com
Publisher: Michigan University
probability4datascience.com
๐2
9. Kafka, The Definitive Guide
Publisher: O'Reilly
https://assets.confluent.io/m/2849a76e39cda2bd/original/20201119-EB-Kafka_The_Definitive_Guide-Preview-Chapters_1_thru_6.pdf
10 Data Science Books
Publisher: O'Reilly
https://assets.confluent.io/m/2849a76e39cda2bd/original/20201119-EB-Kafka_The_Definitive_Guide-Preview-Chapters_1_thru_6.pdf
10 Data Science Books
Coding & Data Science Resources
9. Kafka, The Definitive Guide Publisher: O'Reilly https://assets.confluent.io/m/2849a76e39cda2bd/original/20201119-EB-Kafka_The_Definitive_Guide-Preview-Chapters_1_thru_6.pdf 10 Data Science Books
10. Python Data Science Handbook
Publisher: O'Reilly
HTML: https://jakevdp.github.io/PythonDataScienceHandbook/
PDF: https://github.com/terencetachiona/Python-Data-Science-Handbook/blob/master/Python%20Data%20Science%20Handbook%20-%20Jake%20VanderPlas.pdf
10 Data Science Books
Publisher: O'Reilly
HTML: https://jakevdp.github.io/PythonDataScienceHandbook/
PDF: https://github.com/terencetachiona/Python-Data-Science-Handbook/blob/master/Python%20Data%20Science%20Handbook%20-%20Jake%20VanderPlas.pdf
10 Data Science Books
๐4
One day or Day one. You decide.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Power BI and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Data Analyst.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
Data Science edition.
๐ข๐ป๐ฒ ๐๐ฎ๐ : I will learn SQL.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Download mySQL Workbench.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will build my projects for my portfolio.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Look on Kaggle for a dataset to work on.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will master statistics.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Start the free Khan Academy Statistics and Probability course.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will learn to tell stories with data.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Install Power BI and create my first chart.
๐ข๐ป๐ฒ ๐๐ฎ๐: I will become a Data Data Analyst.
๐๐ฎ๐ ๐ข๐ป๐ฒ: Update my resume and apply to some Data Science job postings.
๐11๐ฅ1๐ฅฐ1
Don't aim for this:
Excel - 100%
SQL - 0%
PowerBI/Tableau - 0%
Python/R - 0%
Aim for this:
Excel - 25%
SQL - 25%
PowerBI/Tableau - 25%
Python/R - 25%
You don't need to know everything straight away.
Excel - 100%
SQL - 0%
PowerBI/Tableau - 0%
Python/R - 0%
Aim for this:
Excel - 25%
SQL - 25%
PowerBI/Tableau - 25%
Python/R - 25%
You don't need to know everything straight away.
๐7โค6๐1
"Here are the some Natural Language Processing Projects"
Advanced Python Scheduler (APScheduler) is a Python library for scheduling code to run later, once or periodically.
You can add new "jobs" or delete old ones on the fly at your discretion.
If you save your jobs to the database, they will also outlast a program restart and keep their state.
You can add new "jobs" or delete old ones on the fly at your discretion.
If you save your jobs to the database, they will also outlast a program restart and keep their state.
๐1
๐ฌ A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution
Github: https://github.com/mjq11302010044/tatt
Paper: https://arxiv.org/abs/2203.09388v2
Dataset: https://deepchecks.com/blog/
Github: https://github.com/mjq11302010044/tatt
Paper: https://arxiv.org/abs/2203.09388v2
Dataset: https://deepchecks.com/blog/
๐4
40 ML Questions you must know with answers โ
๐4๐ฅ1