👍12❤3
30-day roadmap to learn Python up to an intermediate level
Week 1: Python Basics
*Day 1-2:*
- Learn about Python, its syntax, and how to install Python on your computer.
- Write your first "Hello, World!" program.
- Understand variables and data types (integers, floats, strings).
*Day 3-4:*
- Explore basic operations (arithmetic, string concatenation).
- Learn about user input and how to use the
- Practice creating and using variables.
*Day 5-7:*
- Dive into control flow with if statements, else statements, and loops (for and while).
- Work on simple programs that involve conditions and loops.
Week 2: Functions and Modules
*Day 8-9:*
- Study functions and how to define your own functions using
- Learn about function arguments and return values.
*Day 10-12:*
- Explore built-in functions and libraries (e.g.,
- Understand how to import modules and use their functions.
*Day 13-14:*
- Practice writing functions for common tasks.
- Create a small project that utilizes functions and modules.
Week 3: Data Structures
*Day 15-17:*
- Learn about lists and their operations (slicing, appending, removing).
- Understand how to work with lists of different data types.
*Day 18-19:*
- Study dictionaries and their key-value pairs.
- Practice manipulating dictionary data.
*Day 20-21:*
- Explore tuples and sets.
- Understand when and how to use each data structure.
Week 4: Intermediate Topics
*Day 22-23:*
- Study file handling and how to read/write files in Python.
- Work on projects involving file operations.
*Day 24-26:*
- Learn about exceptions and error handling.
- Explore object-oriented programming (classes and objects).
*Day 27-28:*
- Dive into more advanced topics like list comprehensions and generators.
- Study Python's built-in libraries for web development (e.g., requests).
*Day 29-30:*
- Explore additional libraries and frameworks relevant to your interests (e.g., NumPy for data analysis, Flask for web development, or Pygame for game development).
- Work on a more complex project that combines your knowledge from the past weeks.
Throughout the 30 days, practice coding daily, and don't hesitate to explore Python's documentation and online resources for additional help. Learning Python is a dynamic process, so adapt the roadmap based on your progress and interests.
Best Programming Resources: https://topmate.io/coding/886839
ENJOY LEARNING 👍👍
Week 1: Python Basics
*Day 1-2:*
- Learn about Python, its syntax, and how to install Python on your computer.
- Write your first "Hello, World!" program.
- Understand variables and data types (integers, floats, strings).
*Day 3-4:*
- Explore basic operations (arithmetic, string concatenation).
- Learn about user input and how to use the
input() function.- Practice creating and using variables.
*Day 5-7:*
- Dive into control flow with if statements, else statements, and loops (for and while).
- Work on simple programs that involve conditions and loops.
Week 2: Functions and Modules
*Day 8-9:*
- Study functions and how to define your own functions using
def.- Learn about function arguments and return values.
*Day 10-12:*
- Explore built-in functions and libraries (e.g.,
len(), random, math).- Understand how to import modules and use their functions.
*Day 13-14:*
- Practice writing functions for common tasks.
- Create a small project that utilizes functions and modules.
Week 3: Data Structures
*Day 15-17:*
- Learn about lists and their operations (slicing, appending, removing).
- Understand how to work with lists of different data types.
*Day 18-19:*
- Study dictionaries and their key-value pairs.
- Practice manipulating dictionary data.
*Day 20-21:*
- Explore tuples and sets.
- Understand when and how to use each data structure.
Week 4: Intermediate Topics
*Day 22-23:*
- Study file handling and how to read/write files in Python.
- Work on projects involving file operations.
*Day 24-26:*
- Learn about exceptions and error handling.
- Explore object-oriented programming (classes and objects).
*Day 27-28:*
- Dive into more advanced topics like list comprehensions and generators.
- Study Python's built-in libraries for web development (e.g., requests).
*Day 29-30:*
- Explore additional libraries and frameworks relevant to your interests (e.g., NumPy for data analysis, Flask for web development, or Pygame for game development).
- Work on a more complex project that combines your knowledge from the past weeks.
Throughout the 30 days, practice coding daily, and don't hesitate to explore Python's documentation and online resources for additional help. Learning Python is a dynamic process, so adapt the roadmap based on your progress and interests.
Best Programming Resources: https://topmate.io/coding/886839
ENJOY LEARNING 👍👍
👍10❤4👏1
Mastering_Time_Series_Analysis_and_Forecasting_with_Python,_2024.pdf
8.7 MB
Mastering Time Series Analysis and Forecasting with Python
Sulekha Aloorravi, 2024
Sulekha Aloorravi, 2024
🔥6👍4
🖥 Top Programming Languages to learn in 2025 - [Part 1] 🖥
1. JavaScript
- learnjavascript.online
- t.iss.one/javascript_courses/4
- learn-js.org
2. Java
- learnjavaonline.org
- javatpoint.com
3. C#
- learncs.org
- w3schools.com
4. TypeScript
- Typescriptlang.org
- learntypescript.dev
5. Rust
- rust-lang.org
- t.iss.one/crackingthecodinginterview/724
- exercism.org
1. JavaScript
- learnjavascript.online
- t.iss.one/javascript_courses/4
- learn-js.org
2. Java
- learnjavaonline.org
- javatpoint.com
3. C#
- learncs.org
- w3schools.com
4. TypeScript
- Typescriptlang.org
- learntypescript.dev
5. Rust
- rust-lang.org
- t.iss.one/crackingthecodinginterview/724
- exercism.org
👍7
🖥 Top Programming Languages to learn in 2025 - [Part 2] 🖥
6. Go PRogramming
- go.dev
- learn-golang.org
7. Kotlin
- kotlinlang.org
- w3schools.com/KOTLIN
8. Python
- learnpython.org
- t.iss.one/pythonanalyst
9. SQL
- learnsql.com
- t.iss.one/sqlanalyst
10. R Programming
- w3schools.com/r/
- r-coder.com
6. Go PRogramming
- go.dev
- learn-golang.org
7. Kotlin
- kotlinlang.org
- w3schools.com/KOTLIN
8. Python
- learnpython.org
- t.iss.one/pythonanalyst
9. SQL
- learnsql.com
- t.iss.one/sqlanalyst
10. R Programming
- w3schools.com/r/
- r-coder.com
👍16
Three different learning styles in machine learning algorithms:
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
1. Supervised Learning
Input data is called training data and has a known label or result such as spam/not-spam or a stock price at a time.
A model is prepared through a training process in which it is required to make predictions and is corrected when those predictions are wrong. The training process continues until the model achieves a desired level of accuracy on the training data.
Example problems are classification and regression.
Example algorithms include: Logistic Regression and the Back Propagation Neural Network.
2. Unsupervised Learning
Input data is not labeled and does not have a known result.
A model is prepared by deducing structures present in the input data. This may be to extract general rules. It may be through a mathematical process to systematically reduce redundancy, or it may be to organize data by similarity.
Example problems are clustering, dimensionality reduction and association rule learning.
Example algorithms include: the Apriori algorithm and K-Means.
3. Semi-Supervised Learning
Input data is a mixture of labeled and unlabelled examples.
There is a desired prediction problem but the model must learn the structures to organize the data as well as make predictions.
Example problems are classification and regression.
Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabeled data.
👍5
Android App Development For Dummies (Michael Burton).pdf
8.1 MB
Android App development for Dummies
Learn C Programming, 2nd Edition (Jef.).pdf
15 MB
Learn C programming
Jeff Szuhay, 2022
Jeff Szuhay, 2022
❤5👍4