π Complete Roadmap to Become a Data Scientist in 5 Months
π Week 1-2: Fundamentals
β Day 1-3: Introduction to Data Science, its applications, and roles.
β Day 4-7: Brush up on Python programming π.
β Day 8-10: Learn basic statistics π and probability π².
π Week 3-4: Data Manipulation & Visualization
π Day 11-15: Master Pandas for data manipulation.
π Day 16-20: Learn Matplotlib & Seaborn for data visualization.
π€ Week 5-6: Machine Learning Foundations
π¬ Day 21-25: Introduction to scikit-learn.
π Day 26-30: Learn Linear & Logistic Regression.
π Week 7-8: Advanced Machine Learning
π³ Day 31-35: Explore Decision Trees & Random Forests.
π Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
π§ Week 9-10: Deep Learning
π€ Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
πΈ Day 46-50: Learn CNNs & RNNs for image & text data.
π Week 11-12: Data Engineering
π Day 51-55: Learn SQL & Databases.
π§Ή Day 56-60: Data Preprocessing & Cleaning.
π Week 13-14: Model Evaluation & Optimization
π Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
π Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
π Week 15-16: Big Data & Tools
π Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
βοΈ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
π Week 17-18: Deployment & Production
π Day 81-85: Deploy models using Flask or FastAPI.
π¦ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
π― Week 19-20: Specialization
π Day 91-95: Choose NLP or Computer Vision, based on your interest.
π Week 21-22: Projects & Portfolio
π Day 96-100: Work on Personal Data Science Projects.
π¬ Week 23-24: Soft Skills & Networking
π€ Day 101-105: Improve Communication & Presentation Skills.
π Day 106-110: Attend Online Meetups & Forums.
π― Week 25-26: Interview Preparation
π» Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
π Day 116-120: Review your projects & prepare for discussions.
π¨βπ» Week 27-28: Apply for Jobs
π© Day 121-125: Start applying for Entry-Level Data Scientist positions.
π€ Week 29-30: Interviews
π Day 126-130: Attend Interviews & Practice Whiteboard Problems.
π Week 31-32: Continuous Learning
π° Day 131-135: Stay updated with the Latest Data Science Trends.
π Week 33-34: Accepting Offers
π Day 136-140: Evaluate job offers & Negotiate Your Salary.
π’ Week 35-36: Settling In
π― Day 141-150: Start your New Data Science Job, adapt & keep learning!
π Enjoy Learning & Build Your Dream Career in Data Science! ππ₯
π Week 1-2: Fundamentals
β Day 1-3: Introduction to Data Science, its applications, and roles.
β Day 4-7: Brush up on Python programming π.
β Day 8-10: Learn basic statistics π and probability π².
π Week 3-4: Data Manipulation & Visualization
π Day 11-15: Master Pandas for data manipulation.
π Day 16-20: Learn Matplotlib & Seaborn for data visualization.
π€ Week 5-6: Machine Learning Foundations
π¬ Day 21-25: Introduction to scikit-learn.
π Day 26-30: Learn Linear & Logistic Regression.
π Week 7-8: Advanced Machine Learning
π³ Day 31-35: Explore Decision Trees & Random Forests.
π Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
π§ Week 9-10: Deep Learning
π€ Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
πΈ Day 46-50: Learn CNNs & RNNs for image & text data.
π Week 11-12: Data Engineering
π Day 51-55: Learn SQL & Databases.
π§Ή Day 56-60: Data Preprocessing & Cleaning.
π Week 13-14: Model Evaluation & Optimization
π Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
π Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
π Week 15-16: Big Data & Tools
π Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
βοΈ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
π Week 17-18: Deployment & Production
π Day 81-85: Deploy models using Flask or FastAPI.
π¦ Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
π― Week 19-20: Specialization
π Day 91-95: Choose NLP or Computer Vision, based on your interest.
π Week 21-22: Projects & Portfolio
π Day 96-100: Work on Personal Data Science Projects.
π¬ Week 23-24: Soft Skills & Networking
π€ Day 101-105: Improve Communication & Presentation Skills.
π Day 106-110: Attend Online Meetups & Forums.
π― Week 25-26: Interview Preparation
π» Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
π Day 116-120: Review your projects & prepare for discussions.
π¨βπ» Week 27-28: Apply for Jobs
π© Day 121-125: Start applying for Entry-Level Data Scientist positions.
π€ Week 29-30: Interviews
π Day 126-130: Attend Interviews & Practice Whiteboard Problems.
π Week 31-32: Continuous Learning
π° Day 131-135: Stay updated with the Latest Data Science Trends.
π Week 33-34: Accepting Offers
π Day 136-140: Evaluate job offers & Negotiate Your Salary.
π’ Week 35-36: Settling In
π― Day 141-150: Start your New Data Science Job, adapt & keep learning!
π Enjoy Learning & Build Your Dream Career in Data Science! ππ₯
β€10
Python Detailed Roadmap π
π 1. Basics
βΌ Data Types & Variables
βΌ Operators & Expressions
βΌ Control Flow (if, loops)
π 2. Functions & Modules
βΌ Defining Functions
βΌ Lambda Functions
βΌ Importing & Creating Modules
π 3. File Handling
βΌ Reading & Writing Files
βΌ Working with CSV & JSON
π 4. Object-Oriented Programming (OOP)
βΌ Classes & Objects
βΌ Inheritance & Polymorphism
βΌ Encapsulation
π 5. Exception Handling
βΌ Try-Except Blocks
βΌ Custom Exceptions
π 6. Advanced Python Concepts
βΌ List & Dictionary Comprehensions
βΌ Generators & Iterators
βΌ Decorators
π 7. Essential Libraries
βΌ NumPy (Arrays & Computations)
βΌ Pandas (Data Analysis)
βΌ Matplotlib & Seaborn (Visualization)
π 8. Web Development & APIs
βΌ Web Scraping (BeautifulSoup, Scrapy)
βΌ API Integration (Requests)
βΌ Flask & Django (Backend Development)
π 9. Automation & Scripting
βΌ Automating Tasks with Python
βΌ Working with Selenium & PyAutoGUI
π 10. Data Science & Machine Learning
βΌ Data Cleaning & Preprocessing
βΌ Scikit-Learn (ML Algorithms)
βΌ TensorFlow & PyTorch (Deep Learning)
π 11. Projects
βΌ Build Real-World Applications
βΌ Showcase on GitHub
π 12. β Apply for Jobs
βΌ Strengthen Resume & Portfolio
βΌ Prepare for Technical Interviews
Like for more β€οΈπͺ
π 1. Basics
βΌ Data Types & Variables
βΌ Operators & Expressions
βΌ Control Flow (if, loops)
π 2. Functions & Modules
βΌ Defining Functions
βΌ Lambda Functions
βΌ Importing & Creating Modules
π 3. File Handling
βΌ Reading & Writing Files
βΌ Working with CSV & JSON
π 4. Object-Oriented Programming (OOP)
βΌ Classes & Objects
βΌ Inheritance & Polymorphism
βΌ Encapsulation
π 5. Exception Handling
βΌ Try-Except Blocks
βΌ Custom Exceptions
π 6. Advanced Python Concepts
βΌ List & Dictionary Comprehensions
βΌ Generators & Iterators
βΌ Decorators
π 7. Essential Libraries
βΌ NumPy (Arrays & Computations)
βΌ Pandas (Data Analysis)
βΌ Matplotlib & Seaborn (Visualization)
π 8. Web Development & APIs
βΌ Web Scraping (BeautifulSoup, Scrapy)
βΌ API Integration (Requests)
βΌ Flask & Django (Backend Development)
π 9. Automation & Scripting
βΌ Automating Tasks with Python
βΌ Working with Selenium & PyAutoGUI
π 10. Data Science & Machine Learning
βΌ Data Cleaning & Preprocessing
βΌ Scikit-Learn (ML Algorithms)
βΌ TensorFlow & PyTorch (Deep Learning)
π 11. Projects
βΌ Build Real-World Applications
βΌ Showcase on GitHub
π 12. β Apply for Jobs
βΌ Strengthen Resume & Portfolio
βΌ Prepare for Technical Interviews
Like for more β€οΈπͺ
β€5
Steps to become a data analyst
Learn the Basics of Data Analysis:
Familiarize yourself with foundational concepts in data analysis, statistics, and data visualization. Online courses and textbooks can help.
Free books & other useful data analysis resources - https://t.iss.one/learndataanalysis
Develop Technical Skills:
Gain proficiency in essential tools and technologies such as:
SQL: Learn how to query and manipulate data in relational databases.
Free Resources- @sqlanalyst
Excel: Master data manipulation, basic analysis, and visualization.
Free Resources- @excel_analyst
Data Visualization Tools: Become skilled in tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn.
Free Resources- @PowerBI_analyst
Programming: Learn a programming language like Python or R for data analysis and manipulation.
Free Resources- @pythonanalyst
Statistical Packages: Familiarize yourself with packages like Pandas, NumPy, and SciPy (for Python) or ggplot2 (for R).
Hands-On Practice:
Apply your knowledge to real datasets. You can find publicly available datasets on platforms like Kaggle or create your datasets for analysis.
Build a Portfolio:
Create data analysis projects to showcase your skills. Share them on platforms like GitHub, where potential employers can see your work.
Networking:
Attend data-related meetups, conferences, and online communities. Networking can lead to job opportunities and valuable insights.
Data Analysis Projects:
Work on personal or freelance data analysis projects to gain experience and demonstrate your abilities.
Job Search:
Start applying for entry-level data analyst positions or internships. Look for job listings on company websites, job boards, and LinkedIn.
Jobs & Internship opportunities: @getjobss
Prepare for Interviews:
Practice common data analyst interview questions and be ready to discuss your past projects and experiences.
Continual Learning:
The field of data analysis is constantly evolving. Stay updated with new tools, techniques, and industry trends.
Soft Skills:
Develop soft skills like critical thinking, problem-solving, communication, and attention to detail, as they are crucial for data analysts.
Never ever give up:
The journey to becoming a data analyst can be challenging, with complex concepts and technical skills to learn. There may be moments of frustration and self-doubt, but remember that these are normal parts of the learning process. Keep pushing through setbacks, keep learning, and stay committed to your goal.
ENJOY LEARNING ππ
Learn the Basics of Data Analysis:
Familiarize yourself with foundational concepts in data analysis, statistics, and data visualization. Online courses and textbooks can help.
Free books & other useful data analysis resources - https://t.iss.one/learndataanalysis
Develop Technical Skills:
Gain proficiency in essential tools and technologies such as:
SQL: Learn how to query and manipulate data in relational databases.
Free Resources- @sqlanalyst
Excel: Master data manipulation, basic analysis, and visualization.
Free Resources- @excel_analyst
Data Visualization Tools: Become skilled in tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn.
Free Resources- @PowerBI_analyst
Programming: Learn a programming language like Python or R for data analysis and manipulation.
Free Resources- @pythonanalyst
Statistical Packages: Familiarize yourself with packages like Pandas, NumPy, and SciPy (for Python) or ggplot2 (for R).
Hands-On Practice:
Apply your knowledge to real datasets. You can find publicly available datasets on platforms like Kaggle or create your datasets for analysis.
Build a Portfolio:
Create data analysis projects to showcase your skills. Share them on platforms like GitHub, where potential employers can see your work.
Networking:
Attend data-related meetups, conferences, and online communities. Networking can lead to job opportunities and valuable insights.
Data Analysis Projects:
Work on personal or freelance data analysis projects to gain experience and demonstrate your abilities.
Job Search:
Start applying for entry-level data analyst positions or internships. Look for job listings on company websites, job boards, and LinkedIn.
Jobs & Internship opportunities: @getjobss
Prepare for Interviews:
Practice common data analyst interview questions and be ready to discuss your past projects and experiences.
Continual Learning:
The field of data analysis is constantly evolving. Stay updated with new tools, techniques, and industry trends.
Soft Skills:
Develop soft skills like critical thinking, problem-solving, communication, and attention to detail, as they are crucial for data analysts.
Never ever give up:
The journey to becoming a data analyst can be challenging, with complex concepts and technical skills to learn. There may be moments of frustration and self-doubt, but remember that these are normal parts of the learning process. Keep pushing through setbacks, keep learning, and stay committed to your goal.
ENJOY LEARNING ππ
β€4
HuggingFace released a ready-made hardcore guide how to train and host an LLM from scratch.
Content with 200+ pages, 7 big chapters, read + lots of diagrams and examples with Simple English:
Link: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook
Content with 200+ pages, 7 big chapters, read + lots of diagrams and examples with Simple English:
β Architectures, their features, and hyperparameter optimization
β Working with data
β Pretraining and the pitfalls involved
β Post-training: all modern approaches and how to apply them
β Infrastructure, how to build and optimize it properly
Link: https://huggingface.co/spaces/HuggingFaceTB/smol-training-playbook
β€2
Ever wondered how to jump on the Web3 trend and actually earn real rewards? Donβt miss your chance to ride the Lucky Trainβwhere every stop brings new surprises and prizes! Start your journey now and see what rewards are waiting for you right here. Hop aboardβopportunity doesnβt wait!
#ad InsideAds
#ad InsideAds
What if mining could repair the planet and grow your profits at the same time?
Discover next-generation crypto miningβfrom carbon-negative farms to AI-powered energy flows. Stay ahead, unlock passive income, and see what the future of mining really looks like right here!
Be the first to catch tomorrowβs innovationsβjoin Mining Pulse now.
#ad InsideAds
Discover next-generation crypto miningβfrom carbon-negative farms to AI-powered energy flows. Stay ahead, unlock passive income, and see what the future of mining really looks like right here!
Be the first to catch tomorrowβs innovationsβjoin Mining Pulse now.
#ad InsideAds
Imagine earning passive income while you sleepβno charts, no stress, just real results.
With our copy trading system, your account automatically follows top traders. Even beginners start seeing growth instantly.
Want to see how easy it is? Discover the future of effortless income before everyone else.
Join now for your chance to profit: Mining Pulse awaits
#ad InsideAds
With our copy trading system, your account automatically follows top traders. Even beginners start seeing growth instantly.
Want to see how easy it is? Discover the future of effortless income before everyone else.
Join now for your chance to profit: Mining Pulse awaits
#ad InsideAds