๐ช๐ฎ๐ป๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ โ ๐๐ถ๐ฟ๐ฒ๐ฐ๐๐น๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ผ๐ผ๐ด๐น๐ฒ?๐
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
Whether youโre a student, job seeker, or just hungry to upskill โ these 5 beginner-friendly courses are your golden ticket๐๏ธ
No fluff. No fees. Just career-boosting knowledge and certificates that make your resume popโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/42vL6br
Enjoy Learning โ ๏ธ
โค1
Today, lets understand Machine Learning in simplest way possible
What is Machine Learning?
Think of it like this:
Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.
Real-Life Example:
Letโs say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.
The kid starts noticing patterns โ โOh, they have four legs, fur, floppy ears...โ
Next time the kid sees a new picture, they might say, โThatโs a dog!โ โ even if theyโve never seen that exact dog before.
Thatโs what machine learning does โ but instead of a kid, it's a computer.
In Tech Terms (Still Simple):
You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like โthis is a dogโ, โthis is not a dogโ).
It learns the patterns.
Later, when you give it new data, it makes a smart guess.
Few Common Uses of ML You See Every Day:
Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for more โค๏ธ
What is Machine Learning?
Think of it like this:
Machine Learning is when you teach a computer to learn from data, so it can make decisions or predictions without being told exactly what to do step-by-step.
Real-Life Example:
Letโs say you want to teach a kid how to recognize a dog.
You show the kid a bunch of pictures of dogs.
The kid starts noticing patterns โ โOh, they have four legs, fur, floppy ears...โ
Next time the kid sees a new picture, they might say, โThatโs a dog!โ โ even if theyโve never seen that exact dog before.
Thatโs what machine learning does โ but instead of a kid, it's a computer.
In Tech Terms (Still Simple):
You give the computer data (like pictures, numbers, or text).
You give it examples of the right answers (like โthis is a dogโ, โthis is not a dogโ).
It learns the patterns.
Later, when you give it new data, it makes a smart guess.
Few Common Uses of ML You See Every Day:
Netflix: Suggesting shows you might like.
Google Maps: Predicting traffic.
Amazon: Recommending products.
Banks: Detecting fraud in transactions.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like for more โค๏ธ
โค2
Forwarded from Python Projects & Resources
๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐๐๐๐ ๐ฅ๐ฒ๐น๐ฒ๐ฎ๐๐ฒ๐ฑ ๐ฑ ๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฌ๐ผ๐ ๐๐ฎ๐ปโ๐ ๐ ๐ถ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
๐จ Harvard just dropped 5 FREE online tech courses โ no fees, no catches!๐
Whether youโre just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโs top universities โ for FREE. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4eA368I
๐กLearn at your own pace, earn certificates, and boost your resumeโ ๏ธ
๐จ Harvard just dropped 5 FREE online tech courses โ no fees, no catches!๐
Whether youโre just starting out or upskilling for a tech career, this is your chance to learn from one of the worldโs top universities โ for FREE. ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4eA368I
๐กLearn at your own pace, earn certificates, and boost your resumeโ ๏ธ
โค1
If I had to start learning data analyst all over again, I'd follow this:
1- Learn SQL:
---- Joins (Inner, Left, Full outer and Self)
---- Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)
---- Group by and Having clause
---- CTE and Subquery
---- Windows Function (Rank, Dense Rank, Row number, Lead, Lag etc)
2- Learn Excel:
---- Mathematical (COUNT, SUM, AVG, MIN, MAX, etc)
---- Logical Functions (IF, AND, OR, NOT)
---- Lookup and Reference (VLookup, INDEX, MATCH etc)
---- Pivot Table, Filters, Slicers
3- Learn BI Tools:
---- Data Integration and ETL (Extract, Transform, Load)
---- Report Generation
---- Data Exploration and Ad-hoc Analysis
---- Dashboard Creation
4- Learn Python (Pandas) Optional:
---- Data Structures, Data Cleaning and Preparation
---- Data Manipulation
---- Merging and Joining Data (Merging and joining DataFrames -similar to SQL joins)
---- Data Visualization (Basic plotting using Matplotlib and Seaborn)
Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you ๐
1- Learn SQL:
---- Joins (Inner, Left, Full outer and Self)
---- Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)
---- Group by and Having clause
---- CTE and Subquery
---- Windows Function (Rank, Dense Rank, Row number, Lead, Lag etc)
2- Learn Excel:
---- Mathematical (COUNT, SUM, AVG, MIN, MAX, etc)
---- Logical Functions (IF, AND, OR, NOT)
---- Lookup and Reference (VLookup, INDEX, MATCH etc)
---- Pivot Table, Filters, Slicers
3- Learn BI Tools:
---- Data Integration and ETL (Extract, Transform, Load)
---- Report Generation
---- Data Exploration and Ad-hoc Analysis
---- Dashboard Creation
4- Learn Python (Pandas) Optional:
---- Data Structures, Data Cleaning and Preparation
---- Data Manipulation
---- Merging and Joining Data (Merging and joining DataFrames -similar to SQL joins)
---- Data Visualization (Basic plotting using Matplotlib and Seaborn)
Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you ๐
โค2
Forwarded from Python Projects & Resources
๐จ๐ฝ๐๐ธ๐ถ๐น๐น ๐๐ฎ๐๐: ๐๐ฒ๐ฎ๐ฟ๐ป ๐ง๐ฒ๐ฐ๐ต ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ถ๐๐ต ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ถ๐ป ๐๐๐๐ ๐ฏ๐ฌ ๐๐ฎ๐๐!๐
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
Level up your tech skills in just 30 days! ๐ป๐จโ๐
Whether youโre a beginner, student, or planning a career switch, this platform offers project-based courses๐จโ๐ปโจ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3U2nBl4
Start today and youโll be 10x more confident by the end of it!โ ๏ธ
โค1
10 Data Analyst Interview Questions You Should Be Ready For (2025)
โ Explain the difference between INNER JOIN and LEFT JOIN.
โ What are window functions in SQL? Give an example.
โ How do you handle missing or duplicate data in a dataset?
โ Describe a situation where you derived insights that influenced a business decision.
โ Whatโs the difference between correlation and causation?
โ How would you optimize a slow SQL query?
โ Explain the use of GROUP BY and HAVING in SQL.
โ How do you choose the right chart for a dataset?
โ Whatโs the difference between a dashboard and a report?
โ Which libraries in Python do you use for data cleaning and analysis?
Like for the detailed answers for above questions โค๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โ Explain the difference between INNER JOIN and LEFT JOIN.
โ What are window functions in SQL? Give an example.
โ How do you handle missing or duplicate data in a dataset?
โ Describe a situation where you derived insights that influenced a business decision.
โ Whatโs the difference between correlation and causation?
โ How would you optimize a slow SQL query?
โ Explain the use of GROUP BY and HAVING in SQL.
โ How do you choose the right chart for a dataset?
โ Whatโs the difference between a dashboard and a report?
โ Which libraries in Python do you use for data cleaning and analysis?
Like for the detailed answers for above questions โค๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค2
๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐โ๐ ๐๐ฅ๐๐ ๐๐ ๐๐ด๐ฒ๐ป๐๐ ๐๐ผ๐๐ฟ๐๐ฒ โ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ผ๐ ๐๐ต๐ฒ ๐๐๐๐๐ฟ๐ฒ ๐ผ๐ณ ๐๐ ๐ช๐ผ๐ฟ๐ธ๐๐
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
๐จ Microsoft just dropped a brand-new FREE course on AI Agents โ and itโs a must-watch!๐ฒ
If youโve ever wondered how AI copilots, autonomous agents, and decision-making systems actually work๐จโ๐๐ซ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kuGLLe
This course is your launchpad into the future of artificial intelligenceโ ๏ธ
โค1
Top 10 Excel Interview Questions with Answers ๐๐
Free Resources to learn Excel: https://t.iss.one/excel_analyst
1. Question: What is the difference between CONCATENATE and "&" in Excel?
Answer: CONCATENATE and "&" both combine text, but "&" is more concise. For example,
2. Question: How can you freeze rows and columns simultaneously in Excel?
Answer: Use the "Freeze Panes" option under the "View" tab. Select the cell below and to the right of the rows and columns you want to freeze, and then click on "Freeze Panes."
3. Question: Explain the VLOOKUP function and when would you use it?
Answer: VLOOKUP searches for a value in the first column of a range and returns a corresponding value in the same row from another column. It's useful for looking up information in a table based on a specific criteria.
4. Question: What is the purpose of the IFERROR function?
Answer: IFERROR is used to handle errors in Excel formulas. It returns a specified value if a formula results in an error, and the actual result if there's no error.
5. Question: How do you create a PivotTable, and what is its purpose?
Answer: To create a PivotTable, select your data, go to the "Insert" tab, and choose "PivotTable." It summarizes and analyzes data in a spreadsheet, allowing you to make sense of large datasets.
6. Question: Explain the difference between relative and absolute cell references.
Answer: Relative references change when you copy a formula to another cell, while absolute references stay fixed. Use a
7. Question: What is the purpose of the INDEX and MATCH functions?
Answer: INDEX returns a value in a specified range based on the row and column number, while MATCH searches for a value in a range and returns its relative position. Combined, they provide a flexible way to look up data.
8. Question: How can you find and remove duplicate values in Excel?
Answer: Use the "Remove Duplicates" feature under the "Data" tab. Select the range containing duplicates, go to "Data" -> "Remove Duplicates," and choose the columns to check for duplicates.
9. Question: Explain the difference between a workbook and a worksheet.
Answer: A workbook is the entire Excel file, while a worksheet is a single sheet within that file. Workbooks can contain multiple worksheets.
10. Question: What is the purpose of the COUNTIF function?
Answer: COUNTIF counts the number of cells within a range that meet a specified condition. For example,
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Free Resources to learn Excel: https://t.iss.one/excel_analyst
1. Question: What is the difference between CONCATENATE and "&" in Excel?
Answer: CONCATENATE and "&" both combine text, but "&" is more concise. For example,
=A1&B1 achieves the same result as =CONCATENATE(A1, B1).2. Question: How can you freeze rows and columns simultaneously in Excel?
Answer: Use the "Freeze Panes" option under the "View" tab. Select the cell below and to the right of the rows and columns you want to freeze, and then click on "Freeze Panes."
3. Question: Explain the VLOOKUP function and when would you use it?
Answer: VLOOKUP searches for a value in the first column of a range and returns a corresponding value in the same row from another column. It's useful for looking up information in a table based on a specific criteria.
4. Question: What is the purpose of the IFERROR function?
Answer: IFERROR is used to handle errors in Excel formulas. It returns a specified value if a formula results in an error, and the actual result if there's no error.
5. Question: How do you create a PivotTable, and what is its purpose?
Answer: To create a PivotTable, select your data, go to the "Insert" tab, and choose "PivotTable." It summarizes and analyzes data in a spreadsheet, allowing you to make sense of large datasets.
6. Question: Explain the difference between relative and absolute cell references.
Answer: Relative references change when you copy a formula to another cell, while absolute references stay fixed. Use a
$ symbol to make a reference absolute (e.g., $A$1).7. Question: What is the purpose of the INDEX and MATCH functions?
Answer: INDEX returns a value in a specified range based on the row and column number, while MATCH searches for a value in a range and returns its relative position. Combined, they provide a flexible way to look up data.
8. Question: How can you find and remove duplicate values in Excel?
Answer: Use the "Remove Duplicates" feature under the "Data" tab. Select the range containing duplicates, go to "Data" -> "Remove Duplicates," and choose the columns to check for duplicates.
9. Question: Explain the difference between a workbook and a worksheet.
Answer: A workbook is the entire Excel file, while a worksheet is a single sheet within that file. Workbooks can contain multiple worksheets.
10. Question: What is the purpose of the COUNTIF function?
Answer: COUNTIF counts the number of cells within a range that meet a specified condition. For example,
=COUNTIF(A1:A10, ">50") counts the cells in A1 to A10 that are greater than 50.Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค1
Forwarded from Python Projects & Resources
๐ช๐ถ๐ฝ๐ฟ๐ผโ๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฐ๐ฐ๐ฒ๐น๐ฒ๐ฟ๐ฎ๐๐ผ๐ฟ: ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐-๐ง๐ฟ๐ฎ๐ฐ๐ธ ๐๐ผ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ!๐
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
Want to break into Data Science but donโt have a degree or years of experience? Wipro just made it easier than ever!๐จโ๐โจ๏ธ
With the Wipro Data Science Accelerator, you can start learning for FREEโno fancy credentials needed. Whether youโre a beginner or an aspiring data professional๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4hOXcR7
Ready to start? Explore Wiproโs Data Science Accelerator hereโ ๏ธ
โค2
Step-by-step guide to become a Data Analyst in 2025โ๐
1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.
2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.
3. Get Formal Education or Certification:
A bachelorโs degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.
4. Build Hands-on Experience:
Work on real-world projectsโuse Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.
5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.
6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโthese are just as important as technical skills.
7. Apply for Entry-Level Jobs:
Look for roles like โJunior Data Analystโ or โBusiness Analyst.โ Tailor your resume to highlight your skills and portfolio.
8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.
React โค๏ธ for more
1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.
2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.
3. Get Formal Education or Certification:
A bachelorโs degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.
4. Build Hands-on Experience:
Work on real-world projectsโuse Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.
5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.
6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโthese are just as important as technical skills.
7. Apply for Entry-Level Jobs:
Look for roles like โJunior Data Analystโ or โBusiness Analyst.โ Tailor your resume to highlight your skills and portfolio.
8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.
React โค๏ธ for more
โค3๐ฅ1
Forwarded from Artificial Intelligence
๐๐ถ๐ฑ๐ฑ๐ฒ๐ป ๐๐ฒ๐บ ๐ณ๐ผ๐ฟ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐ ๐๐ง, ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ!๐
Still searching for quality learning resources?๐
What if I told you thereโs a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ and most people have never even heard of it? ๐คฏ
๐๐ถ๐ป๐ธ๐:-๐
https://pdlink.in/4lN7aF1
Donโt skip this chanceโ ๏ธ
Still searching for quality learning resources?๐
What if I told you thereโs a platform offering free full-length courses from top universities like MIT, Stanford, and Harvard โ and most people have never even heard of it? ๐คฏ
๐๐ถ๐ป๐ธ๐:-๐
https://pdlink.in/4lN7aF1
Donโt skip this chanceโ ๏ธ
โค1
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasnโt been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Hers is the brief A-Z overview of the terms used in Artificial Intelligence World
A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.
B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.
C - Chatbot: AI software that can hold conversations with users via text or voice.
D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.
E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.
F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.
G - Generative AI: AI that can create new content like text, images, audio, or code.
H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.
I - Image Recognition: The ability of AI to detect and classify objects or features in an image.
J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.
K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.
L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).
M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.
N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.
O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.
P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.
Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.
R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.
S - Supervised Learning: Machine learning where models are trained on labeled datasets.
T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.
U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.
V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.
W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.
X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.
Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.
Z - Zero-shot Learning: The ability of AI to perform tasks it hasnโt been explicitly trained on.
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค2
๐ฏ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
Want to break into Data Analytics but donโt know where to start? ๐ค
These 3 beginner-friendly and 100% FREE courses will help you build real skills โ no degree required!๐จโ๐
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/3IohnJO
No confusion, no fluff โ just pure valueโ ๏ธ
Want to break into Data Analytics but donโt know where to start? ๐ค
These 3 beginner-friendly and 100% FREE courses will help you build real skills โ no degree required!๐จโ๐
๐๐ถ๐ป๐ธ:-๐
https://pdlink.in/3IohnJO
No confusion, no fluff โ just pure valueโ ๏ธ
Data Science isn't easy!
Itโs the field that turns raw data into meaningful insights and predictions.
To truly excel in Data Science, focus on these key areas:
0. Understanding the Basics of Statistics: Master probability, distributions, and hypothesis testing to make informed decisions.
1. Mastering Data Preprocessing: Clean, transform, and structure your data for effective analysis.
2. Exploring Data with Visualizations: Use tools like Matplotlib, Seaborn, and Tableau to create compelling data stories.
3. Learning Machine Learning Algorithms: Get hands-on with supervised and unsupervised learning techniques, like regression, classification, and clustering.
4. Mastering Python for Data Science: Learn libraries like Pandas, NumPy, and Scikit-learn for data manipulation and analysis.
5. Building and Evaluating Models: Train, validate, and tune models using cross-validation, performance metrics, and hyperparameter optimization.
6. Understanding Deep Learning: Dive into neural networks and frameworks like TensorFlow or PyTorch for advanced predictive modeling.
7. Staying Updated with Research: The field evolves fastโkeep up with the latest methods, research papers, and tools.
8. Developing Problem-Solving Skills: Data science is about solving real-world problems, so practice by tackling real datasets and challenges.
9. Communicating Results Effectively: Learn to present your findings in a clear and actionable way for both technical and non-technical audiences.
Data Science is a journey of learning, experimenting, and refining your skills.
๐ก Embrace the challenge of working with messy data, building predictive models, and uncovering hidden patterns.
โณ With persistence, curiosity, and hands-on practice, you'll unlock the power of data to change the world!
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#datascience
Itโs the field that turns raw data into meaningful insights and predictions.
To truly excel in Data Science, focus on these key areas:
0. Understanding the Basics of Statistics: Master probability, distributions, and hypothesis testing to make informed decisions.
1. Mastering Data Preprocessing: Clean, transform, and structure your data for effective analysis.
2. Exploring Data with Visualizations: Use tools like Matplotlib, Seaborn, and Tableau to create compelling data stories.
3. Learning Machine Learning Algorithms: Get hands-on with supervised and unsupervised learning techniques, like regression, classification, and clustering.
4. Mastering Python for Data Science: Learn libraries like Pandas, NumPy, and Scikit-learn for data manipulation and analysis.
5. Building and Evaluating Models: Train, validate, and tune models using cross-validation, performance metrics, and hyperparameter optimization.
6. Understanding Deep Learning: Dive into neural networks and frameworks like TensorFlow or PyTorch for advanced predictive modeling.
7. Staying Updated with Research: The field evolves fastโkeep up with the latest methods, research papers, and tools.
8. Developing Problem-Solving Skills: Data science is about solving real-world problems, so practice by tackling real datasets and challenges.
9. Communicating Results Effectively: Learn to present your findings in a clear and actionable way for both technical and non-technical audiences.
Data Science is a journey of learning, experimenting, and refining your skills.
๐ก Embrace the challenge of working with messy data, building predictive models, and uncovering hidden patterns.
โณ With persistence, curiosity, and hands-on practice, you'll unlock the power of data to change the world!
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
#datascience
โค2
Forwarded from Python Projects & Resources
๐ฒ ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฆ๐ค๐ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ (๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ๐๐ฒ๐๐!)๐
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
๐ฏ Want to level up your SQL skills with real business scenarios?๐
These 6 hands-on SQL projects will help you go beyond basic SELECT queries and practice what hiring managers actually care about๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/40kF1x0
Save this post โ even completing 1 project can power up your SQL profile!โ ๏ธ
โค1
Amazon Interview Process for Data Scientist position
๐Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.
After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).
๐ ๐ฅ๐ผ๐๐ป๐ฑ ๐ฎ- ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฟ๐ฒ๐ฎ๐ฑ๐๐ต:
In this round the interviewer tested my knowledge on different kinds of topics.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฏ- ๐๐ฒ๐ฝ๐๐ต ๐ฅ๐ผ๐๐ป๐ฑ:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฐ- ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฅ๐ผ๐๐ป๐ฑ-
This was a Python coding round, which I cleared successfully.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฑ- This was ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐ฟ where my fitment for the team got assessed.
๐๐๐ฎ๐๐ ๐ฅ๐ผ๐๐ป๐ฑ- ๐๐ฎ๐ฟ ๐ฅ๐ฎ๐ถ๐๐ฒ๐ฟ- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.
So, here are my Tips if youโre targeting any Data Science role:
-> Never make up stuff & donโt lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
๐Round 1- Phone Screen round
This was a preliminary round to check my capability, projects to coding, Stats, ML, etc.
After clearing this round the technical Interview rounds started. There were 5-6 rounds (Multiple rounds in one day).
๐ ๐ฅ๐ผ๐๐ป๐ฑ ๐ฎ- ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ฟ๐ฒ๐ฎ๐ฑ๐๐ต:
In this round the interviewer tested my knowledge on different kinds of topics.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฏ- ๐๐ฒ๐ฝ๐๐ต ๐ฅ๐ผ๐๐ป๐ฑ:
In this round the interviewers grilled deeper into 1-2 topics. I was asked questions around:
Standard ML tech, Linear Equation, Techniques, etc.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฐ- ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐ฅ๐ผ๐๐ป๐ฑ-
This was a Python coding round, which I cleared successfully.
๐๐ฅ๐ผ๐๐ป๐ฑ ๐ฑ- This was ๐๐ถ๐ฟ๐ถ๐ป๐ด ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐ฟ where my fitment for the team got assessed.
๐๐๐ฎ๐๐ ๐ฅ๐ผ๐๐ป๐ฑ- ๐๐ฎ๐ฟ ๐ฅ๐ฎ๐ถ๐๐ฒ๐ฟ- Very important round, I was asked heavily around Leadership principles & Employee dignity questions.
So, here are my Tips if youโre targeting any Data Science role:
-> Never make up stuff & donโt lie in your Resume.
-> Projects thoroughly study.
-> Practice SQL, DSA, Coding problem on Leetcode/Hackerank.
-> Download data from Kaggle & build EDA (Data manipulation questions are asked)
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING ๐๐
โค2
Building Your Personal Brand as a Data Analyst ๐
A strong personal brand can help you land better job opportunities, attract freelance clients, and position you as a thought leader in data analytics.
Hereโs how to build and grow your brand effectively:
1๏ธโฃ Optimize Your LinkedIn Profile ๐
Use a clear, professional profile picture and a compelling headline (e.g., Data Analyst | SQL | Power BI | Python Enthusiast).
Write an engaging "About" section showcasing your skills, experience, and passion for data analytics.
Share projects, case studies, and insights to demonstrate expertise.
Engage with industry leaders, recruiters, and fellow analysts.
2๏ธโฃ Share Valuable Content Consistently โ๏ธ
Post insightful LinkedIn posts, Medium articles, or Twitter threads on SQL, Power BI, Python, and industry trends.
Write about real-world case studies, common mistakes, and career advice.
Share data visualization tips, SQL tricks, or step-by-step tutorials.
3๏ธโฃ Contribute to Open-Source & GitHub ๐ป
Publish SQL queries, Python scripts, Jupyter notebooks, and dashboards.
Share projects with real datasets to showcase your hands-on skills.
Collaborate on open-source data analytics projects to gain exposure.
4๏ธโฃ Engage in Online Data Analytics Communities ๐
Join and contribute to Reddit (r/dataanalysis, r/SQL), Stack Overflow, and Data Science Discord groups.
Participate in Kaggle competitions to gain practical experience.
Answer questions on Quora, LinkedIn, or Twitter to establish credibility.
5๏ธโฃ Speak at Webinars & Meetups ๐ค
Host or participate in webinars on LinkedIn, YouTube, or data conferences.
Join local meetups or online communities like DataCamp and Tableau User Groups.
Share insights on career growth, best practices, and analytics trends.
6๏ธโฃ Create a Portfolio Website ๐
Build a personal website showcasing your projects, resume, and blog.
Include interactive dashboards, case studies, and problem-solving examples.
Use Wix, WordPress, or GitHub Pages to get started.
7๏ธโฃ Network & Collaborate ๐ค
Connect with hiring managers, recruiters, and senior analysts.
Collaborate on guest blog posts, podcasts, or YouTube interviews.
Attend data science and analytics conferences to expand your reach.
8๏ธโฃ Start a YouTube Channel or Podcast ๐ฅ
Share short tutorials on SQL, Power BI, Python, and Excel.
Interview industry experts and discuss data analytics career paths.
Offer career guidance, resume tips, and interview prep content.
9๏ธโฃ Offer Free Value Before Monetizing ๐ก
Give away free e-books, templates, or mini-courses to attract an audience.
Provide LinkedIn Live Q&A sessions, career guidance, or free tutorials.
Once you build trust, you can monetize through consulting, courses, and coaching.
๐ Stay Consistent & Keep Learning
Building a brand takes timeโstay consistent with content creation and engagement.
Keep learning new skills and sharing your journey to stay relevant.
Follow industry leaders, subscribe to analytics blogs, and attend workshops.
A strong personal brand in data analytics can open unlimited opportunitiesโfrom job offers to freelance gigs and consulting projects.
Start small, be consistent, and showcase your expertise! ๐ฅ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
#dataanalyst
A strong personal brand can help you land better job opportunities, attract freelance clients, and position you as a thought leader in data analytics.
Hereโs how to build and grow your brand effectively:
1๏ธโฃ Optimize Your LinkedIn Profile ๐
Use a clear, professional profile picture and a compelling headline (e.g., Data Analyst | SQL | Power BI | Python Enthusiast).
Write an engaging "About" section showcasing your skills, experience, and passion for data analytics.
Share projects, case studies, and insights to demonstrate expertise.
Engage with industry leaders, recruiters, and fellow analysts.
2๏ธโฃ Share Valuable Content Consistently โ๏ธ
Post insightful LinkedIn posts, Medium articles, or Twitter threads on SQL, Power BI, Python, and industry trends.
Write about real-world case studies, common mistakes, and career advice.
Share data visualization tips, SQL tricks, or step-by-step tutorials.
3๏ธโฃ Contribute to Open-Source & GitHub ๐ป
Publish SQL queries, Python scripts, Jupyter notebooks, and dashboards.
Share projects with real datasets to showcase your hands-on skills.
Collaborate on open-source data analytics projects to gain exposure.
4๏ธโฃ Engage in Online Data Analytics Communities ๐
Join and contribute to Reddit (r/dataanalysis, r/SQL), Stack Overflow, and Data Science Discord groups.
Participate in Kaggle competitions to gain practical experience.
Answer questions on Quora, LinkedIn, or Twitter to establish credibility.
5๏ธโฃ Speak at Webinars & Meetups ๐ค
Host or participate in webinars on LinkedIn, YouTube, or data conferences.
Join local meetups or online communities like DataCamp and Tableau User Groups.
Share insights on career growth, best practices, and analytics trends.
6๏ธโฃ Create a Portfolio Website ๐
Build a personal website showcasing your projects, resume, and blog.
Include interactive dashboards, case studies, and problem-solving examples.
Use Wix, WordPress, or GitHub Pages to get started.
7๏ธโฃ Network & Collaborate ๐ค
Connect with hiring managers, recruiters, and senior analysts.
Collaborate on guest blog posts, podcasts, or YouTube interviews.
Attend data science and analytics conferences to expand your reach.
8๏ธโฃ Start a YouTube Channel or Podcast ๐ฅ
Share short tutorials on SQL, Power BI, Python, and Excel.
Interview industry experts and discuss data analytics career paths.
Offer career guidance, resume tips, and interview prep content.
9๏ธโฃ Offer Free Value Before Monetizing ๐ก
Give away free e-books, templates, or mini-courses to attract an audience.
Provide LinkedIn Live Q&A sessions, career guidance, or free tutorials.
Once you build trust, you can monetize through consulting, courses, and coaching.
๐ Stay Consistent & Keep Learning
Building a brand takes timeโstay consistent with content creation and engagement.
Keep learning new skills and sharing your journey to stay relevant.
Follow industry leaders, subscribe to analytics blogs, and attend workshops.
A strong personal brand in data analytics can open unlimited opportunitiesโfrom job offers to freelance gigs and consulting projects.
Start small, be consistent, and showcase your expertise! ๐ฅ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
#dataanalyst
โค2
Forwarded from Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ โ ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ถ๐๐ต ๐๐๐๐ ๐ฏ ๐๐ผ๐ฟ๐ฒ ๐ฆ๐ธ๐ถ๐น๐น๐!๐
Want to break into Data Analytics without a degree or expensive bootcamps?๐จโ๐ป๐
All you need are 3 essentials to get started๐
๐ Excel | ๐ข SQL | ๐ง Basic Maths
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3IwVWGE
You can learn & practice them 100% FREEโ ๏ธ
Want to break into Data Analytics without a degree or expensive bootcamps?๐จโ๐ป๐
All you need are 3 essentials to get started๐
๐ Excel | ๐ข SQL | ๐ง Basic Maths
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3IwVWGE
You can learn & practice them 100% FREEโ ๏ธ
1700001429173.pdf
427.3 KB
Top Python libraries for generative AI
Generative AI is a branch of artificial intelligence that focuses on the creation of new content, such as text, images, music, and code. This is done by training models on large datasets of existing content, which the model then uses to generate new content.
Python is a popular programming language for generative AI, as it has a wide range of libraries and frameworks available.
Generative AI is a branch of artificial intelligence that focuses on the creation of new content, such as text, images, music, and code. This is done by training models on large datasets of existing content, which the model then uses to generate new content.
Python is a popular programming language for generative AI, as it has a wide range of libraries and frameworks available.
Programming Practice Python 2023.pdf
5.4 MB
Programming Practice Python
Like for more
Like for more
โค6
๐๐ฟ๐ฎ๐ฐ๐ธ ๐๐๐๐ก๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ โ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐!๐
If youโre serious about cracking top tech interviews โ from FAANG to startups โ this is the roadmap you canโt afford to miss๐
Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ completely free๐คฉ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3TJlpyW
Your dream job might just start here.โ ๏ธ
If youโre serious about cracking top tech interviews โ from FAANG to startups โ this is the roadmap you canโt afford to miss๐
Thousands have used it to land roles at Google, Amazon, Microsoft, and more โ completely free๐คฉ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3TJlpyW
Your dream job might just start here.โ ๏ธ
โค1