Coding & Data Science Resources
30.4K subscribers
334 photos
515 files
337 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
Python Science Projects.pdf_20231120_013618_0000.pdf
2.1 MB
Python Data Science Projects For Boosting Your Portfolio
Modern Time Series Forecasting with Python.pdf
25.5 MB
Modern Time Series Forecasting with Python
Manu Joseph, 2022
Rlecturenotes.pdf
4.3 MB
An Introduction to R
Petra Kuhnert, 2007
โค4
Forwarded from Artificial Intelligence
๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ง๐—ผ๐—ฝ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

If youโ€™re job hunting, switching careers, or just want to upgrade your skill set โ€” Google Skillshop is your go-to platform in 2025!

Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4dwlDT2

Enroll For FREE & Get Certified ๐ŸŽ“๏ธ
Machine learning .pdf
5.3 MB
Core machine learning concepts explained through memes and simple charts created by Mihail Eric.
โค1๐Ÿ‘1
๐Ÿ” Machine Learning Cheat Sheet ๐Ÿ”

1. Key Concepts:
- Supervised Learning: Learn from labeled data (e.g., classification, regression).
- Unsupervised Learning: Discover patterns in unlabeled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learn by interacting with an environment to maximize reward.

2. Common Algorithms:
- Linear Regression: Predict continuous values.
- Logistic Regression: Binary classification.
- Decision Trees: Simple, interpretable model for classification and regression.
- Random Forests: Ensemble method for improved accuracy.
- Support Vector Machines: Effective for high-dimensional spaces.
- K-Nearest Neighbors: Instance-based learning for classification/regression.
- K-Means: Clustering algorithm.
- Principal Component Analysis(PCA)

3. Performance Metrics:
- Classification: Accuracy, Precision, Recall, F1-Score, ROC-AUC.
- Regression: Mean Absolute Error (MAE), Mean Squared Error (MSE), R^2 Score.

4. Data Preprocessing:
- Normalization: Scale features to a standard range.
- Standardization: Transform features to have zero mean and unit variance.
- Imputation: Handle missing data.
- Encoding: Convert categorical data into numerical format.

5. Model Evaluation:
- Cross-Validation: Ensure model generalization.
- Train-Test Split: Divide data to evaluate model performance.

6. Libraries:
- Python: Scikit-Learn, TensorFlow, Keras, PyTorch, Pandas, Numpy, Matplotlib.
- R: caret, randomForest, e1071, ggplot2.

7. Tips for Success:
- Feature Engineering: Enhance data quality and relevance.
- Hyperparameter Tuning: Optimize model parameters (Grid Search, Random Search).
- Model Interpretability: Use tools like SHAP and LIME.
- Continuous Learning: Stay updated with the latest research and trends.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best ๐Ÿ‘๐Ÿ‘
โค1๐Ÿ‘1
Forwarded from Artificial Intelligence
๐Ÿณ ๐—•๐—ฒ๐˜€๐˜ ๐—ช๐—ฒ๐—ฏ๐˜€๐—ถ๐˜๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ก๐—ผ ๐—–๐—ผ๐˜€๐˜, ๐—ก๐—ผ ๐—–๐—ฎ๐˜๐—ฐ๐—ต!)๐Ÿ˜

Want to become a Data Scientist in 2025 without spending a single rupee? Youโ€™re in the right place๐Ÿ“Œ

From Python and machine learning to hands-on projects and challenges๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4dAuymr

Enjoy Learning โœ…๏ธ
๐Ÿ‘1
๐Ÿ–ฅ Roadmap of free courses for learning Python and Machine learning.

โ–ชData Science
โ–ช AI/ML
โ–ช Web Dev

1. Start with this
https://kaggle.com/learn/python

2. Take any one of these

โฏ https://t.iss.one/pythondevelopersindia/76

โฏ https://youtu.be/rfscVS0vtbw?si=WdvcwfYR3PaLiyJQ

3. Then take this
https://netacad.com/courses/programming/pcap-programming-essentials-python

4. Attempt for this certification
https://freecodecamp.org/learn/scientific-computing-with-python/

5. Take it to next level

โฏ Data Visualization
https://kaggle.com/learn/data-visualization

โฏ Machine Learning
https://developers.google.com/machine-learning/crash-course

https://t.iss.one/datasciencefun/290

โฏ Deep Learning (TensorFlow)
https://kaggle.com/learn/intro-to-deep-learning

Please more reaction with our posts

Credits: https://t.iss.one/datasciencefree
๐Ÿ‘2
๐—•๐—ฟ๐—ฒ๐—ฎ๐—ธ ๐—œ๐—ป๐˜๐—ผ ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—œ๐—ง ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

If youโ€™re serious about AI, you canโ€™t skip Deep Learningโ€”and this FREE course from MIT is one of the best ways to start๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Offered by MITโ€™s top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H6cggR

Why wait to get started when you can learn from MIT for free?โœ…๏ธ