без фрейда, к сожалению
3.37K subscribers
12 photos
2 files
216 links
написать мне: @acherm
Download Telegram
Антипамять – механизм, который позволяет угомонить недавно созданные воспоминания. Если упрощено, воспоминание – это изменение некоторого числа возбуждающих нейронов, что делает их более активными. И если ничего не поменять, то воспоминание своей активность будет вносить помехи. Вот здесь и нужна антипамять – второй этап адаптации следа памяти, когда постепенно встраиваются тормозные (ГАМК-ергические), зеркальные первым, соединения, приглушая активность и делая воспоминание стабильным.

Недавно провели исследование, где косвенно подтвердили этот механизм с помощью ассоциативного обучения (это когда вы вспоминаете имя человека, глядя на его лицо). Спустя сутки после запоминания, когда уже прошли оба этапа, а в коре воцарились спокойствие и равновесие, учёные применили tDCS. Из-за этого баланс тормозных и возбуждающих процессов нарушился (перед этим они точно опередили, где воспоминание находится с помощью фМРТ), в результате подопытные легче вспоминали как всегда ненужную им информацию к радости учёных.

https://www.cell.com/neuron/fulltext/S0896-6273(16)00168-9

#память #ГАМК
Стресс снижает запоминание контекста: хуже и даже неправильно кодируются последовательность событий и обстановка. Зато усиливается более простое, можно сказать рефлекторное и менее гибкое научение. На фМРТ перемены тоже видны: снижается активность системы гиппокампом-ПФК (эпизодическая память), а стриатум работает энергичнее.

В новом исследовании всё это показали наглядно. Подопытные смотрели видеоролики с эротической сценой, с неприятными, пугающими событиями и нейтральное видео. В результате испытуемые, смотревшие два первых ролика, плохо вспоминали контекст, но хорошо – яркие детали. То есть любое эмоциональное возбуждение, по-видимому, серьезно модулирует когнитивные способности.

С одной стороны, сдвиг в когнитивных процессах помогает адаптации. В неожиданных ситуациях лучше запомнить самое важное. С другой стороны, эта же закономерность нередко приводит к стрессовым расстройствам. Если упрощено, плохое кодирование контекста делает воспоминания ригидными и плохо контролируемыми. Поэтому они могут сработать в разных ситуациях, вызывая телесные и эмоциональные перемены. Известно, к примеру, если человек пережил острый стресс, но в течение несколько часов после него обстоятельно с кем-то поговорил, вспоминая полную картину, то вероятность ПТСР снижается.

https://www.frontiersin.org/articles/10.3389/fnbeh.2017.00206/full

#стресс #память #гиппокамп
Люди, которые хорошо распознают ощущения из тела (интероцепция), например частоту биения сердца, сытость, голод и так далее, более альтруистичны. Так как альтруистичные люди – очень полезные граждане, учёные ищут способы немного снизить нашу ненависть друг к другу.

В недавнем эксперименте улучшили распознание сердечного ритма у группы испытуемых, потом заставили принять участие в экономической игре, где можно было делиться деньгами или отказаться от этого. К сожалению, натренированные испытуемые не стали более альтруистичны, тренинга не хватило.

Скорее всего, причинно-следственные связи сложнее. Учёные считают, что нужно более точно выявить связь между интероцепцией и лимбическими структурами. Известно, к примеру, что у суровых альтруистов, которые стали донорами органов для незнакомцев, увеличена амигдала, а это приводит к более сильным эмоциям, когда человек смотрит на испуганные лица или страдания других людей. Поэтому, если упрощено, интероцепция помогает лучше распознавать эмоции*, но не более того, и для альтруизма этого недостаточно. Хотя это ещё не точно.

https://www.nature.com/articles/s41598-017-14318-8

*если человек злой, но плохо распознает свои эмоции, тренинг учёных сделает его ещё злее?

#альтруизм #интероцепция
Обучение, по крайней мере время от времени, запускает нейропластичность. Новые клетки, синапсы, дендриты, глия – новые возможности, или как-то так.

Но всё не так просто. Оказывается, большинство изменений чуть позже так же резво откатываться назад. Нейроны помирают, синапсы исчезают и так далее. Это выяснили в недавнем эксперименте, где среди прочего измеряли объем коры сразу после обучения и ещё позднее. В первом случае участки коры (моторные области) на процент или два расширялись, а потом опять сужались.

Учёные считают, что нейропластичность идёт по законам естественного отбора. Сначала сделать побольше новых клеток, потом разбираться, какие полезные, какие не очень. В результате малополезные клетки исчезают.

https://www.livescience.com/60967-brain-cells-learning-pruning.html

#нейрогенез #обучение
Глубокая стимуляция мозга (DBS) – нейрохирургический метод лечения болезни Паркинсона. Человеку вживляют в ткани мозга тонкие электроды, которые достигают субталамического ядра и мягко его стимулируют. В результате сходят на нет двигательные расстройства и тремор.

DBS пробовали и при других расстройствах, но, к примеру, результаты с депрессией и ОКР противоречивы. Основная проблема – выбрать правильную мишень для воздействия. С расстройствами настроения сделать это дико сложно. Но возможно, DBS можно применять при проблемах с памятью и деменциях. А если сработает, идти до конца – улучшать память всем, кто захочет.

Список мишеней может быть таким: круг Пейпеца, фронто-стриарная система, модуляция ритма в гиппокампе. Круг Пейпеца – нейронная сеть, которая важна для памяти и эмоций. Нервные импульсы бегают там по кругу, начиная от гиппокампа и заканчивая там же, но по пути проходя ещё много всего. Этот механизм даёт сбои при болезни Альцгеймера, болезни Паркинсона, эпилепсии и разных деменциях. Фронто-стриарная сеть критически важна для рабочей памяти, исполнительных функций и извлечения воспоминаний. Некоторые клинические случаи уже подтверждают, что через неё можно модулировать работу памяти. Ну а с гиппокампом, например, есть такая закономерность: тета-ритм там перед запоминанием улучшает работу памяти.

здесь об этом подробнее: https://www.psychiatrictimes.com/special-reports/deep-brain-stimulation-memory-deficits/page/0/1

7-минутное видео с эффектом DBS на тремор при болезни Паркинсона: https://m.youtube.com/watch?v=D0Hlo_5nDX4

а здесь о разработке DARPA, работающем на принципах DBS нейроимпланте, который вроде как поможет и с расстройствами настроения и с когнитивными функциями: https://www.nature.com/news/ai-controlled-brain-implants-for-mood-disorders-tested-in-people-1.23031

20-минутная лекция о том, как проводят саму процедуру DBS: https://m.youtube.com/watch?list=PLEQ79D8S45g3pEdAb39kYDnQz1F0szF_-&v=fP7Rgbv41Vs

#DBS
26-летнему японцу вживили в мозг несколько электродов, чтобы купировать эпилептические приступы. Несколько электродов оказались в веретенообразной извилине, в области распознания лиц (FFA). В результате у пациента появились необычные галлюцинации при стимуляции. Он видел лица в любых предметах: в коробке, в футбольном мяче, на листе с иероглифами. А когда перед его глазами показался экспериментатор, сказал, что его лицо походит на персонажа из аниме.

Эксперименты со стимуляцией этого участка зрительной коры уже проводили на шимпанзе. И там выявили, что обезьяны путались в распознание лиц со склонность категоризировать не-лица в категорию лиц. А в 2012 году другому пациенту так же установили электроды в веретенообразную извилину, чтобы помочь с эпилепсией. Ни о каких галлюцинациях он не сообщал (хотя, может, плохо тестировали).

Искажения в распознании лиц – ожидаемый эффект, а вот лицевые галлюцинации – что-то странное. Раньше считали, что FFA необходимо, чтобы просто видеть лица в целостности. А теперь, возможно, окажется, что этот участок нужен, чтоб не видеть их повсюду. Но это навряд ли.

https://blogs.discovermagazine.com/neuroskeptic/2017/11/04/facephenes-phantasmal-faces/#.Whw8EcuOHqB

Есть мнение, что FFA не именно про распознание лиц, а вообще про распознание объектов, которые важные, но очень похожие. Активность этого участка наблюдали у автолюбителей, когда они глядели на автомобили. У орнитологов, когда они птиц рассматривали. И даже у шахматистов глядящих на доску.

Ну и о парейдолии, способности видеть паттерны там, где их нет. Самый распространенный вариант парейдолии – как раз видеть лица повсюду: в облаках, в предметах и так далее. FFA загоралась очень рано в исследованиях парейдолии. Это может говорить о том, что способность видеть лица где ни попадя не требует включения сложных когнитивных процессов. То есть это такое вшитое, элементарное явление.

https://en.m.wikipedia.org/wiki/Fusiform_face_area

#FFA #восприятие
Воспоминания не статичны. При каждом извлечении воспоминание переходит в неустойчивое состояние и меняется под действием текущего опыта. А потом пересохраняется в новом виде. Это называется реконсолидацией. Логично предположить, что самые надёжные воспоминания – это те, которые никогда не вспоминались. Такой вот парадокс.

Лабильность памяти может помочь в лечении расстройств настроения. Можно, к примеру, поменять эмоциональный компонент травматичного опыта, чтобы он стал менее мучительным. Этим уже давно занимается психотерапия, но нейронаука тоже что-то предложить в состоянии.

Во-первых, реконсолидация требует повторного синтеза белков, чтобы стабилизировать обновленные следы памяти. Если помешать этому процессу, то воспоминание, упрощено говоря, ослабнет. Есть данные, что пропранолол ослабляет имплицитную память, например реакцию испуга на триггер при фобии (изображение паука при арахнофобии).

Во-вторых, частичный агонист NMDA-рецепторов D-циклосерин, похоже, помогает экспозиционной психотерапии за счёт усиления имплицитного научения. Что-то похожее происходит, по некоторым данным, когда человек принимает СИОЗС и ходит на психотерапию. СИОЗС повышает экспрессии BDNF, из-за чего усиливается откликаемость на новый опыт. В результате во время психотерапии пациент быстрее учится реагировать по-новому на пугающие ситуации и забывает привычные паттерны.

В-третьих, сейчас проводят испытания на мышах, могут ли искусственно активированные приятные воспоминания изменить травматичный опыт, но результатов пока нет.

Нейроимпланты, о которых сейчас твердят все, кому не лень, тоже теоретически могут не только улучшать память, но и корректировать её. Возможно, даже стирать воспоминания, а не только ослаблять их.

Небольшая заметка об искусственной активации воспоминаний у мышей: https://directorsblog.nih.gov/2017/11/28/creative-minds-seeing-memories-in-a-new-light/amp/

Как должен работать нейроимплант по чистке памяти: www.frontiersin.org/articles/10.3389/fnins.2017.00584/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_447064_55_Neuros_20171107_arts_A

Небольшой обзор и немного размышлений об этике манипуляций с памятью: https://neuronline.sfn.org/articles/professional-development/2017/erasing-memories

Большой обзор текущих данных по психофармакологической реконсолидации. Плюс один клинический случай по лечению фобии с помощью анаприлина (Линк на скачивание pdf): https://vk.com/doc4671767_452381446

#реконсолидация #память #DBS
В службе столичной полиции Лондона с 2015 года работает группа супер распознавателей лиц. Эти удивительные люди запоминают почти все лица, которые видят. А потом в состоянии ещё отличить одно от другого и сказать, где нужная физиономия встречалась. Лондон кишит видеокамерами и нарушителями спокойствия, поэтому современные герои – это те, кто может соотнести размытое изображение с уличной камеры и фото из полицейской базы. Кстати, лондонская полиция ищет ещё таких людей. Можете пройти тест по ссылке внизу поста.

Супер распознавателей (СР) около 1% в общей популяции. И они противоположность людей с прозопагнозией, то есть неспособностью или большими затруднениями в различении лиц. Восприятие лиц – сложная и важная вещь, поэтому она идёт немного отдельно от развития других познавательных умений. Считается, что умение хорошо распознавать лица формируется окончательно уже во взрослом возрасте. Но недавно нашли 14-летнюю девочку, которая оказалась СР.

Как водится, провели много тестов, выяснили, что паттерны движения глаз у неё схожи со взрослыми СР. Все они больше смотрят на нос почему-то. Так же выдающееся распознание лиц неоднородно и разбивается по крайней мере на две части: сама перцепция и запоминание, что не удивительно. Ну и умение это действительно несколько изолированно: подопытная показала в целом средние показатели по другим тестами (восприятие машин, домов, перевёрнутых и искаженных объектов и лиц).

Как посчитали учёные, девочка вдвойне необычна, у неё быстрее, чем в норме сформировалась система распознания лиц. Но насколько это умение будет стабильным, неясно. Так что будут её исследовать и дальше иногда, наверное.

https://www.tandfonline.com/doi/full/10.1080/02643294.2017.1402755#

Здесь можно пройти быстрый тест на распознание лиц: https://greenwichuniversity.eu.qualtrics.com/jfe/form/SV_e3xDuCccGAdgbfT

#восприятие
Прекрасная история из запредельной реальности. Мальчик в первые две недели жизни получил обширные билатеральные повреждения первичной зрительной коры и по законам мироздания должен был остаться слепым. Та самая корковая слепота, о которой я рассказывал давным-давно в канале (найдёте по тегу).

Мальчику сейчас семь лет и он какими-то образом видит. Играет в футбол и видеоигры, нормально ориентируется в пространстве, определяет лицевые эмоции и так далее.

Мозг провёл масштабную перестройку связей. На структурной и диффузионной МРТ выявили уплотнение путей в латеральном коленчатом теле таламуса, нижнем ядре подушки и во вторичных зрительных участках (вроде как в зоне V5). За счёт чего, похоже, сознательная обработка визуальных стимулов восстановилась. В общем, компенсаторные возможности мозга, особенно в детстве, удивительны.

https://sciencealert.com/case-study-vision-patient-with-bilateral-occipital-lobe-v1-injury

О случае доложили на сборище нейроученых в Австралии. Полноценной статьи я не нашел, но может плохо искал: бестолково потыкал ссылки в обзоре и всё. Зато есть файл с кратким описанием всех докладов. Этот случай на 209 странице: https://ans2017.aomevents.com.au/wp-content/uploads/sites/13/2017/12/ANS-2017-Proceedings.pdf

#зрительная_кора
Социальное обучение в сочетании с флуоксетином сделало из враждебных крыс добряков. У крыс, как и у людей, детские потрясения нередко ведут к абнормальной агрессивности во взрослом возрасте. Одна из самых явных причин – социальная изоляция или отвержение в сенситивный детский период. Это когда мозг чрезвычайно пластичен.

Логично было бы предположить, что поместив такую уже взрослую крысу в уютную и добрую стаю сородичей, враждебность уйдет под влиянием нового опыта. Но это плохо работает: крысы склонны вновь нападать при малейшем изменении обстановки. Что-то похожее у людей: групповые занятия по управлению гневом не так эффективны, как хотелось бы.

Стойкость агрессии можно объяснить тем, что сенситивный период закончился и отклик мозга на новый опыт слабый. То есть конфигурация, полученная в детстве, сохраняется. Например, низкая экспрессия Bdnf в амигдале и инфралимбической коре (ИК). Плюс, похоже, важна связь вентральный гиппокамп-ИК. Чем она прочнее, тем лучше животное контролирует агрессию: проекции нейронов гиппокампа там конкурируют с проекциями других лимбических структур и таким путем снижает агрессию.

В новом исследовании снижали агрессию через социальное обучение и флуоксетин. Это антидепресант, который недавно заподозрили в том, что он заново открывает (хотя бы немного) сенситивный период. Только флуоксетин или только ресоциализация враждебность сильно не снижали. Крысы все равно нападали чаще и кусали в уязвимые места (шея, голова – крысы умные и не хотят причинять сильные повреждения сородичам, а только обозначить место в иерархии).

А вот препарат плюс ресоциализация враждебность убрали. И уровни bdnf-trkb сигналинга восстановились и связь гиппокамп-ИК лучше заработала. В общем, пример того, как психофармакология может хорошо работать вместе с психотерапией, наверное.

https://www.nature.com/articles/npp2017142?WT.ec_id=NPP-201801&spMailingID=55553822&spUserID=MjQ5NzQzNDE1MjA2S0&spJobID=1302103555&spReportId=MTMwMjEwMzU1NQS2

#агрессия #нейропластичность #флуоксетин #bdnf
Злоупотребление алкоголем, как выяснили в недавнем исследовании из Translational psychiatry, ведёт к преждевременному старению мозга. Один из основных и наглядных признаков старения мозга – уменьшение объема серого вещества, но разные участки по-разному уязвимы к этому процессу. И вообще вся машинерия эйджинга нервной ткани ещё достаточно не ясна. Поэтому об аналогии можно говорить только с некоторыми оговорками.

В исследовании сканировали мозги 119 подопытных с алкогольной зависимостью и 92 мозга относительно здоровых добровольцев. В примерно сотне участков мозга нашли соответствия (схожие показатели уменьшения объема) между возрастным изменениями и, похоже, следом неуёмного потребления этанола.

Эффект зависит от возраста: у 20-30 летних эффекта не выявили, следующее десятилетие — около четырех лет плюсом, а в 60 лет – мозг на одиннадцать лет старше.

В более раннем исследовании хронические алкоголики проходили много нейропсихологических тестов. Потом их результаты сравнивали со средними возрастными результатами в этих же тестах. Выводы получили примерно те же.

Причины, почему алкоголь производит такое действие, не очень понятны. Но вообще метаболиты спирта производят огромное число эффектов на мозг. А при длительном потреблении происходит нейроадаптация к этим сдвигам. Например, снижение числа дофаминовых рецепторов в мезолимбическом пути, повышение числа NMDA рецепторов, что связывают с некоторыми симптомами абстинентного синдрома. Плюс, похоже, задействованы эпигенетические механизмы (к примеру, (де)ацетилирование гистонов), что и приводит к стойкости тяги, возможно.

https://www.nature.com/articles/s41398-017-0037-y#ref-CR11

#аддикция #алкоголь
This media is not supported in your browser
VIEW IN TELEGRAM
Всех с наступающим. Канал, как уже понятно, пока на каникулах)
ГМО-мышки, включение и выключение нейронов с помощью света, красивейшие и неземные фотографии гиппокампа – обо всём этом в неплохом тексте о текущих исследованиях памяти, а конкретнее о лаборатории Судзуми Тонегавы. Тонегава в 1987 году получил Нобелевскую премию за исследования в иммунологии (генетический принцип разнообразия антител). А потом резко сменил направление и занялся молекулярными основами запоминания, где опять в авангарде прогресса.

Его лаба прояснила различия в механизмах запоминания и извлечения воспоминаний. То, что это два самостоятельных процесса, предполагали давно. Хотя бы на основе клинических случаев. Но именно Тонегава с коллегами выяснили различия в нейромеханизмах.

Второе и более контринтуитивное открытие – молчаливые или тихие энграммы (silent engrams). Писал немного об этом исследовании в канале прошлой весной. Если коротко, то новые знания оставляют след сразу в двух местах: в гиппокампе и префронтальной коре. Но энграммы в ПФК какое-то время молчат. Почему и зачем это происходит, остаётся непонятным. Ещё более странно, что тихие энграммы не требуют синтеза белков. Память скорее кодируется в контуре соединений, а усиление синапсов нужно, чтобы новыми знаниями можно было пользоваться.

В голову сходу приходят десятки возможностей, как новые данные использовать. От маловероятных до вполне реальных. Если включить режим научного фантаста, то легко предположить, что на свет сознания можно вытащить все воспоминания, которые до этого времени почему-то дремали в мозге. Но мозг не склад пыльных воспоминаний, конечно, поэтому открытие, скорее всего, послужит для нового лечения нейродегенеративных расстройств, то есть появляется возможность фиксить серьезные проблемы с запоминанием. Собственно, у грызунов уже искусственно включали эти энграммы через оптогенетику или с помощью белка PAK1. Какой эффект такая активация произведет на человека ещё предстоит выяснить, но уже волнительно.

https://www.quantamagazine.org/light-triggered-genes-reveal-the-hidden-workings-of-memory-20171214/#comments

весенний пост об исследовании молчаливых энграмм: https://t.iss.one/booksfromouterspace/155

и вот ещё заметка в Нейроновостях о последних открытиях лаборатории Тонегавы: https://neuronovosti.ru/silent_engrams_article/

#память
Черничный уксус исправил вредные эффекты скополамина у мышей. Выяснили это учёные из Южной Кореи. С помощью скополамина моделируют нейродегенеративные процессы: он вызывает амнезию, ведёт к оксидативному стрессу и так далее – почти как при болезни Альцгеймера.

Черничный уксус, во-первых, ингибировал ацетилхолинэстеразу, в результате сигналинг ацетилхолина восстановился. Во-вторых, помог антиоксидативному процессу. И в-третьих, повысил уровни BDNF и CREB белков в гиппокампе.

И главное: регулярно пробовавшие уксус мыши, несмотря на туман скополаминового забвения, нашли верный путь из зловещего лабиринта, который построили учёные.

Захотелось черники, хотя понятие не имею, когда её ел и на что это было похоже.

https://pubs.acs.org/doi/10.1021/acs.jafc.7b03965#/doi/10.1021/acs.jafc.7b03965
Forwarded from Neuroscience+
Благодаря необыкновенному успеху человека как вида мы питаемся более насыщенно и регулярно, чем когда-либо раньше. Человек в развитом современном обществе, питаясь 3 и более раз в день, периодически восполняет запасы гликогена.
При истощении гликогена после 10-14 часов голодания или 1 часа упорных физических упражнений основным энергетическим ресурсом тела становятся кетоновые тела. Переход к кетозу снижает интенсивность процессов в нейроне через основной, чувствительный к энергетическому состоянию, переключатель - mTOR. Синаптическая пластичность, наоборот, становится больше. Организм переходит к состоянию повышенной устойчивости к стрессу. Сигналлинг инсулиноподобного фактора роста IGF1 тоже, ожидаемо вслед за BDNF, растет. Это сопровождается падением самого IGF1 в крови, и ровно так же происходит с инсулином: инсулина меньше, чувствительность клеток к нему больше. Также кетоз сопровождается такими восстановительными процессами, как репарация ДНК, экспрессия антиоксидантных и анти-апоптотических белков.
Лишенный ресурсов, организм тратит запасы на поддержку готового к поиску пищи состояния мозга.

После потребления пищи и обратному переходу к глюкозе как основному источнику энергии включается mTOR, начинается синтез белков, синаптогенез, биогенез митохондрий чтобы обеспечить большую энергетическую устойчивость. Несмотря на падение высоких кетоновых показателей трофических факторов, повышается нейропластичность.

Белки-энергетические переключатели (mTOR, сенсор энергетического статуса клетки AMPK) действуют на пластичность двояко. При переходе в низкоэнергетическому режиму пластичность растет, но продолжительно низкий энергетический профиль снижает пластичность. Поэтому чередование циклов низкого потребления энергии из кетоновых тел и глюкозы важно для поддержания синаптической пластичности, нейрогенеза и даже, как показывают исследования, лучших когнитивных и эмоциональных показателей.

Подобные циклические программы потребления пищи и упраженений, как голодание 16 часов в сутки или сниженное потребление калорий каждый второй день, улучшают восстановление после травм ЦНС и повышают устойчивость к нейродегенерации, почему и могут найти применение в терапии.

Intermittent metabolic switching, neuroplasticity and brain health
https://www.nature.com/articles/nrn.2017.156
Глюкокортикоиды угнетают нейрогенез. Поэтому во время долгого стресса появляется меньше новых нейронов и они хуже выживают. Зато если организм приспособился или стрессор исчез, то процесс вновь выходит на прежние мощности. Но непонятно, отличаются ли появившиеся во время стресса или сразу после него нейроны от других.

В недавнем эксперименте проверяли, как работают эти нейроны, дети стресса, на грызунах. В клетку к обычным мышам время от времени подсаживали специально выведенных агрессивных сородичей. Длилось это две недели, в завершающие пять дней испытания учёные промаркировали новые нейроны в субгранулярной зоне. Ну а дальше смотрели за их судьбой.

Выводы, если очень кратко, такие. Сразу после стресса повышается выживаемость новых нейронов на 34-42%. То есть происходит гиперкомпенсация наподобие той, какая бывает из-за обогащённой среды или после пространственного обучения. Новые нейроны к десятой неделе хорошо встроилось в слой гранулярных клеток в зубчатой извилине и не отличались от других по плотности шипиков и уровню ветвления дендритов.

Дальше интереснее. В задании на пространственное обучение (водный лабиринт с платформой), где как раз участвовали новые клетки, мыши хуже удерживали новую информацию. А при повторных таких же стрессах эти нейроны и вовсе, похоже, выключались из пространственного обучения. И ещё новые стрессы, схожие с предыдущим, оказывали большее влияние на маркированные нейроны (число шипиков, к примеру, резвее уменьшалось). Можно даже подумать, что эти нейроны настроены на специфический тип стресса, как некое приспособление заранее.

Ну и ещё: усиленный нейрогенез произошел, когда мыши все ещё терпели злобных гостей. По-видимому, уже установилась новая иерархия и подопытные грызуны оказалось в её низу. Научились избегать столкновения и лишний раз не показываться на глаза (снижение поискового и исследовательского поведения, общая пассивность). И именно это поведение, похоже, было в какой-то мере ассоциировано с нейрогенезом. То есть много новых нейронов не всегда хорошо. Возможно, это ведёт к ригидным способам поведения или даже расстройствами настроения у людей. Хотя эта идея не нова (ну и все рассуждения умозрительны).

https://www.nature.com/articles/s41380-017-0013-1

ссылка на скачивание pdf: https://vk.com/doc4671767_459065003

#нейрогенез
Ментоловые сигареты, оказывается, коварнее обычных. Во-первых, число ремиссий среди ментоловых курильщиков существенно ниже. Во-вторых, те, кто начал курить ментоловые сигареты с большей вероятностью сформируют зависимость от никотина.

В недавнем исследовании обнаружили, что ментол действительно усиливает аддиктивные эффекты никотина у грызунов. У мышей и условный рефлекс прочнее оказался и поисковое поведение настырнее. А в вентральной области покрышки никотиновые рецепторы из субъединиц α4α6β2, которые и так чувствительны к никотину, стали ещё более восприимчивы и увеличились числом. В результате повысилась возбудимость, а потому и частота срабатываний дофаминовых нейронов, что, скорее всего, связано с поисковыми поведением и вознаграждающими эффектами никотина.

Исследование, конечно, сложнее, подробнее здесь: https://www.nature.com/articles/npp201772?WT.ec_id=NPP-201711&spMailingID=55135132&spUserID=MjQ5NzQzNDE1MjA2S0&spJobID=1262291978&spReportId=MTI2MjI5MTk3OAS2

#никотин #аддикция