Big Data AI
16.8K subscribers
907 photos
117 videos
19 files
910 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
🎥📊 SpatialVID: Обширный видеодатасет с пространственными аннотациями

SpatialVID предлагает более 21,000 часов видео с детализированными 3D аннотациями, включая позиции камер и карты глубины. Этот датасет создан для улучшения моделей пространственного интеллекта и подходит для исследований в области видео и 3D-визуализации.

🚀Основные моменты:
- Более 2.7 миллиона клипов с разнообразными сценами
- Аннотации включают динамические маски и структурированные подписи
- Поддержка реальных динамических сцен с точными данными о движении камер
- Уникальный ресурс для повышения обобщающей способности моделей

📌 GitHub: https://github.com/NJU-3DV/SpatialVID

#python
3👍1
🤖 Tongyi DeepResearch: мощная языковая модель для глубокого поиска

Tongyi DeepResearch — это языковая модель с 30,5 миллиарда параметров, специально разработанная для глубоких информационно-ориентированных задач. Она демонстрирует выдающиеся результаты на различных бенчмарках, включая Humanity's Last Exam и WebWalkerQA, благодаря автоматизированному синтезу данных и передовым методам обучения с подкреплением.

🚀Основные моменты:
- Высокая производительность на сложных задачах поиска.
- Полностью автоматизированный процесс синтеза данных.
- Совместимость с несколькими парадигмами вывода.
- Эффективное обучение с использованием данных агентных взаимодействий.

📌 GitHub: https://github.com/Alibaba-NLP/DeepResearch

#python
2
🧬 ShinkaEvolve: Эволюция программ с помощью ИИ

ShinkaEvolve — это фреймворк, который сочетает большие языковые модели с эволюционными алгоритмами для автоматизации научных открытий. Он позволяет улучшать научный код, используя креативные возможности ИИ и оптимизацию через эволюцию, поддерживая параллельную оценку кандидатов.

🚀 Основные моменты:
- Комбинирует LLM и эволюционные алгоритмы.
- Поддерживает параллельную оценку на локальных машинах и кластерах.
- Хранит архив успешных решений для передачи знаний.
- Оптимизирует производительность при сохранении корректности кода.
- Идеален для научных задач с доступными проверяющими.

📌 GitHub: https://github.com/SakanaAI/ShinkaEvolve

#python