🎙 Ученые из Сбера предложили способ, как даже при небольшом объеме обучающих данных локальными моделями добиться высокой точности обнаружения галлюцинаций LLM — это прорыв в выявлении галлюцинаций искусственного интеллекта
Что важно:
– Точность выявления ошибок выше на ~30% по сравнению с аналогами.
– Для обучения хватает всего 250 примеров.
– Основан на анализе внутренних состояний LLM.
– Работает на классических алгоритмах и трансформере TabPFNv2.
– Снижает затраты на разметку и повышает надёжность ответов ИИ.
Что важно:
– Точность выявления ошибок выше на ~30% по сравнению с аналогами.
– Для обучения хватает всего 250 примеров.
– Основан на анализе внутренних состояний LLM.
– Работает на классических алгоритмах и трансформере TabPFNv2.
– Снижает затраты на разметку и повышает надёжность ответов ИИ.
❤5👍5😁2🔥1
🔥 Intern-S1-mini — новая лёгкая опенсорсная мультимодальная reasoning-модель
✨ 8B LLM + 0.3B vision encoder
✨ Лицензия Apache 2.0
✨ Обучение на 5T мультимодальных данных (50%+ — научные домены)
✨ Dynamic tokenizer для молекул и белковых последовательностей
🔗 https://huggingface.co/internlm/Intern-S1-mini
✨ 8B LLM + 0.3B vision encoder
✨ Лицензия Apache 2.0
✨ Обучение на 5T мультимодальных данных (50%+ — научные домены)
✨ Dynamic tokenizer для молекул и белковых последовательностей
🔗 https://huggingface.co/internlm/Intern-S1-mini
huggingface.co
internlm/Intern-S1-mini · Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
❤3👍1