Big data world
2.36K subscribers
412 photos
64 videos
18 files
1.25K links
Интересные статьи Data Science : Big Data : Machine Learning : Deep Learning

По вопросам сотрудничества- @Daily_admin_info

По иным темам @un_ixtime
Download Telegram
101 упражнение Pandas для анализа данных

101 упражнение Python Pandas предназначены для того, чтобы бросить вызов вашим логическим мышцам и помочь усвоить манипулирование данными с помощью любимого пакета Python для анализа данных.

https://www.machinelearningplus.com/python/101-pandas-exercises-python/
Примеры, показывающие, как использовать API-интерфейс OpenAI Vision для обработки изображений, видеофайлов и потоков веб-камеры. Полностью автоматизированная маркировка изображений с помощью кода API GroundingDINO + SAM + OpenAI Vision: https://github.com/roboflow/awesome-openai-vision-api-experiments
Создание поиска в видео

Сегодня мы собираемся взглянуть на закулисную технологию, лежащую в основе того, как Netflix создает великолепные трейлеры, ролики для Instagram, короткометражные видеоролики и другие рекламные видеоролики.

Предположим, вы пытаетесь создать трейлер к боевику «Серый человек» и знаете, что хотите использовать кадр взрывающейся машины. Вы не знаете, существует ли этот кадр и где он находится в фильме, и вам приходится искать его, просматривая весь фильм.

Мы создали внутреннюю систему, которая позволяет кому-то выполнять поиск внутри видео по всему видеокаталогу Netflix, и мы хотели быподелиться своим опытом создания этой системы.

https://netflixtechblog.com/building-in-video-search-936766f0017c
👍2
Бесплатный практический вебинар: Рабочий день аналитика данных.

Когда: 15 ноября в 19:00 по мск.


✔️Погружаемся в профессию и составляем отчет о продажах интернет-магазина.

✔️Покажем, какие задачи решают аналитики данных, какие проекты реализуют и как помогают бизнесу принимать решения и расти.

✔️Расскажем, как пройти собеседование, найти удаленную работу и начать менять свою жизнь уже сегодня.

🎁 Дарим скидку 100 000 рублей на курс «Аналитик данных» и 20 000 рублей депозит до 19 ноября, а еще + 6 месяцев сопровождения наставника и карьерного трека после обучения!


Реклама. АНПОО "ХЕКСЛЕТ КОЛЛЕДЖ". ИНН 7839056670. erid: LjN8JycWu
Выпустив недавно отличную языковую модель Zephyr, команда HuggingFace демонстрирует, как можно обучать персонализированные модели, построенные на основе нескольких мощных предварительно обученных моделей с открытым исходным кодом. подробнее→ https://github.com/huggingface/alignment-handbook

Суперразрешение аудио (GitHub Repo
) Сверхразрешение звука - это процесс повышения качества и достоверности любого звука, реального или синтетического. Большинство систем суперразрешения ориентированы на конкретные задачи, при этом отдельные модели обучаются для отдельных типов аудиоданных. Эта новая работа - удивительный шаг вперед, когда одна модель может служить для повышения качества звука в разных задачах. подробнее→ https://github.com/haoheliu/versatile_audio_super_resolution
This media is not supported in your browser
VIEW IN TELEGRAM
Итак, Генеративный ИИ в РЕАЛЬНОМ ВРЕМЕНИ уже здесь. 🔥

Все инструменты проектирования, все рабочие процессы — ВСЕ изменится.

💡Вот все, что вам нужно знать о LCM-LoRA.

https://arxiv.org/abs/2311.05556

https://latent-consistency-models.github.io/
Сегментация дорог с помощью лидара (GitHub Repo) Исследователи разработали для самоуправляемых автомобилей более интеллектуальный метод распознавания дорог с помощью технологии лидара, который требует меньше ручной работы, но при этом сохраняет точность системы. подробнее→ https://github.com/evocargo/lidar-annotation-is-all-you-need
👍5
Представляем Mirasol, мультимодальную модель для обучения через аудио, видео и текст, которая разделяет моделирование на отдельные авторегрессионные модели для обработки входных данных в соответствии с характеристиками их модальностей, обеспечивая высочайшую производительность

https://blog.research.google/2023/11/scaling-multimodal-understanding-to.html
Ускорение генеративного искусственного интеллекта с помощью PyTorch: сегментируйте что угодно быстро

Этот пост является первой частью многосерийного блога, посвященного тому, как ускорить генеративные модели ИИ с помощью чистого, нативного PyTorch. Мы рады поделиться множеством недавно выпущенных функций производительности PyTorch, а также практическими примерами того, как эти функции можно комбинировать, чтобы увидеть, насколько далеко мы можем повысить производительность PyTorch. https://pytorch.org/blog/accelerating-generative-ai/
Модель прогнозирования погоды DeepMind (репозиторий GitHub)
DeepMind уже несколько лет работает над прогнозированием погоды. Последняя модель, построенная на графовых нейронных сетях, чрезвычайно точна для 10-дневных прогнозов. https://github.com/google-deepmind/graphcast


Интерполяция видеокадров с индексацией расстояния
Существующие методы интерполяции видеокадров (VFI) слепо предсказывают, где находится каждый объект в определенный момент времени t («индексация времени»), что затрудняет предсказание точных движений объекта. Учитывая два изображения ⚾️, существует бесконечно много возможных траекторий: ускоряющихся или замедляющихся, прямых или изогнутых. Это часто приводит к размытым кадрам, поскольку метод усредняет эти возможности. Вместо того, чтобы заставлять сеть неявно изучать это сложное сопоставление времени и местоположения вместе с прогнозированием кадров, мы предоставляем сети явную подсказку о том, как далеко объект прошел между начальным и конечным кадрами. Новый подход получил название «индексация расстояния». https://zzh-tech.github.io/InterpAny-Clearer
Microsoft запустила лучший курс по генеративному искусственному интеллекту. Бесплатный курс из 12 уроков доступен на Github и научит вас всему, что вам нужно знать, чтобы начать создавать приложения генеративного ИИ.

https://github.com/microsoft/generative-ai-for-beginners
👍3
5 бесплатных курсов для освоения машинного обучения
Вам интересно изучать и создавать модели машинного обучения? Начните обучение сегодня с помощью этих бесплатных курсов машинного обучения.

https://www.kdnuggets.com/5-free-courses-to-master-machine-learning
3
This media is not supported in your browser
VIEW IN TELEGRAM
Интерактивная панель управления Python, чтобы продемонстрировать сэмплер Гиббса, концепцию в цепи Маркова Монте-Карло

https://github.com/GeostatsGuy/PythonNumericalDemos/blob/master/Interactive_Gibbs_Sampler.ipynb
Создайте языковую модель в своих чатах WhatsApp

Визуальное руководство по архитектуре GPT с приложением

В этой статье я расскажу вам о своем пути создания (маленькой) языковой модели, которая генерирует синтетические разговоры, используя мои сообщения чата WhatsApp в качестве входных данных. https://towardsdatascience.com/build-a-language-model-on-your-whatsapp-chats-31264a9ced90
🏆Как освоить 📊 конвейеры больших данных с помощью Taipy и PySpark 🐍

В этой статье будет использован простой пример, чтобы продемонстрировать, как мы можем интегрировать PySpark с Taipy , чтобы соединить ваши потребности в обработке больших данных с интеллектуальным выполнением заданий . https://dev.to/taipy/how-to-master-big-data-pipelines-with-taipy-and-pyspark-14oe
👍1
Ускорение генеративного ИИ с Pytorch II: GPT, быстро.

https://pytorch.org/blog/accelerating-generative-ai-2/
llamafile - это комбинация llama.cpp и Cosmopolitan libc. Это означает, что вы можете использовать практически любой процессор на любой ОС и упаковать свою модель в один исполняемый файл.
больше→ https://github.com/Mozilla-Ocho/llamafile