Big data world
2.39K subscribers
412 photos
64 videos
18 files
1.25K links
Интересные статьи Data Science : Big Data : Machine Learning : Deep Learning

По вопросам сотрудничества- @Daily_admin_info

По иным темам @un_ixtime
Download Telegram
Масштабируемое языковое моделирование без MatMul

Наши эксперименты показывают, что предлагаемые нами модели без MatMul достигают производительности на уровне современных трансформаторов, которым требуется гораздо больше памяти во время вывода в масштабе как минимум до 2,7B параметров.

https://github.com/ridgerchu/matmulfreellm
Практическое руководство по масштабированию обучения модели машинного обучения

https://blog.dailydoseofds.com/p/a-practical-guide-to-scaling-ml-model
Модель авторегрессии превосходит диффузию: лама для создания масштабируемых изображений

Мы представляем LlamaGen, новое семейство моделей генерации изображений, которые применяют оригинальную парадигму «предсказания следующего токена» больших языковых моделей к области визуальной генерации.

https://github.com/foundationvision/llamagen
🧵 Блокнот Jupyter на базе искусственного интеллекта, созданный с использованием React. 🧵
Блокнот Python на базе искусственного интеллекта, встроенный в React: создавайте и редактируйте ячейки кода, автоматически исправляйте ошибки и общайтесь с вашим кодом. Самое приятное то, что Thread работает локально и его можно бесплатно использовать с вашим собственным ключом API…

https://github.com/squaredtechnologies/thread
🔥3👍1
Эмпирическое исследование использования энергии и производительности библиотек Python для анализа данных Pandas и Polars [PDF]
Мы стремимся оценить энергопотребление Pandas, широко используемой библиотеки манипулирования данными Python, и Polars, библиотеки на основе Rust, известной своей производительность. Целью исследования является предоставление аналитикам данных информации путем определения сценариев, в которых одна библиотека превосходит другую с точки зрения энергопотребления, а также изучения возможных корреляций между показателями энергопотребления и производительности… https://www.ivanomalavolta.com/files/papers/EASE_2024.pdf

Справочник по генеративному искусственному интеллекту: план учебных ресурсов

https://genai-handbook.github.io/
Уроки, извлеченные из масштабирования до многотерабайтных наборов данных.
Этот пост предназначен для того, чтобы познакомить вас с некоторыми уроками, которые я усвоил при работе с многотерабайтными наборами данных…

https://v2thegreat.com/2024/06/19/lessons-learned-from-scaling-to-multi-terabyte-datasets/
Развертывание моделей машинного обучения: пошаговое руководство
Давайте рассмотрим процесс развертывания моделей в производстве.

https://www.kdnuggets.com/deploying-machine-learning-models-a-step-by-step-tutorial
Хотите изучить квантование в модели большого языка?
Простое руководство, которое научит вас интуитивному квантованию с помощью простого математического вывода и кодирования в PyTorch.

https://pub.towardsai.net/want-to-learn-quantization-in-the-large-language-model-57f062d2ec17
Я тебя с вертухи сломаю, если ещё раз заговоришь об ИИ

Последние инновации в сфере ИИ, наиболее примечательными из которых стали проекты наподобие GPT-4, очевидно, могут иметь далеко идущие последствия для общества: от утопического избавления от монотонного труда до антиутопического ущерба для работы художников в капиталистическом обществе, а также до экзистенциальных угроз самому человечеству.

Лично я получил формальное образование дата-саентиста, даже выиграв в высококонкурентном конкурсе по машинному обучению в одном из лучших университетов Австралии и написав магистерскую, для которой создал в MATLAB с нуля собственные библиотеки. Я не гений в этой сфере, но, очевидно, лучше большинства конкурентов, то есть практиков вроде меня; я не могу, сидя в пещере, создавать собственные библиотеки на C, но умею читать учебники, реализовывать готовые решения на языках высокого уровня и использовать библиотеки, написанные элитными организациями.

Поэтому с глубочайшим сожалением должен объявить, что следующий человек, который начнёт говорить мне о реализации ИИ, получит от меня сеанс живительных процедур над позвоночником; иными словами, я сломаю ему нафиг шею. Мне очень-очень жаль. https://habr.com/ru/articles/823584/
🎯Ищете работу в ИТ? Присоединяйтесь к нашему тг-каналу EKLEFT JOB и будьте в курсе лучших вакансий!

В нашем канале вы найдете:
- Эксклюзивные вакансии в ТОП компаниях из производственной, банковской и сферы ритейла
- Свежие вакансии, срок каждой не более 1-2 дней

Откликаясь на вакансию, вы попадаете сразу к нашему рекрутеру, который сразу расскажет подробности вакансии.
Подпишитесь на канал и начните карьеру в ведущих ИТ-компаниях уже сегодня.

Ваше будущее в ИТ начинается здесь!
👍1
Эта работа представляет Depth Anything V2. Он значительно превосходит V1 по детализации и надежности. По сравнению с моделями на основе SD, он имеет более высокую скорость вывода, меньшее количество параметров и более высокую точность глубины.

https://github.com/DepthAnything/Depth-Anything-V2
Оптимизация машинного обучения с помощью Optuna
Как точно настроить каждый алгоритм машинного обучения в Python. Полное руководство по оптимизации машинного обучения с помощью Optuna для достижения отличных характеристик моделей.

https://towardsdatascience.com/machine-learning-optimization-with-optuna-57593d700e52
Короткие размышления об инженерии ИИ и «проваленных проектах ИИ»
Традиционная инженерия ML была очень сложной. Она все еще очень сложная. Я думаю, что одной из самых сложных задач в традиционном жизненном цикле ML является подготовка данных… Сегодня прототипирование приложений ИИ происходит быстрее, чем когда-либо, и гораздо больше людей могут создавать приложения ИИ. Можно утверждать, что LLM предложили (несколько обманчивую) возможность упростить подготовку данных — полностью обойдя ее… Генеративный ИИ и LLM немного интереснее в том смысле, что у большинства людей нет никакой формы систематической оценки перед отправкой

https://www.sh-reya.com/blog/ai-engineering-short/
Наслаждайтесь волшебством моделей Diffusion!

DiffSynth Studio — это движок Diffusion. Мы реструктурировали архитектуры, включая Text Encoder, UNet, VAE и другие, сохранив совместимость с моделями сообщества открытого исходного кода и одновременно повысив вычислительную производительность. Мы предоставляем много интересных функций. Наслаждайтесь волшебством моделей Diffusion!

https://github.com/modelscope/DiffSynth-Studio
Яндекс разработал и опубликовал библиотеку YaFSDP — собственное решение для ускорения обучения больших языковых моделей.

При обучении LLM возникает проблема сложности вычислений и коммуникаций GPU в кластере. Большие расчёты должны синхронизироваться на разных видеокартах, а для этого сами устройства должны обмениваться информацией, чтобы не считать два раза одно и то же. Если GPU делают это неэффективно, то они теряют до 30% недоутилизированной мощности.

Библиотека YaFSDP позволяет ускорить обучение больших языковых моделей до 25%. С её помощью можно тратить меньше времени на обучение и расходовать меньше ресурсов графических процессоров (GPU). Подробнее о том, как менялись подходы к оптимизации ресурсов можно прочитать в статье на «Хабре».

Реклама. ООО "ЯНДЕКС". ИНН 7736207543.
1
Обнаружение галлюцинаций в больших языковых моделях с использованием семантической энтропии
Большие языковые модели (LLM), такие как ChatGPT и Gemini, часто генерируют ложные или необоснованные результаты, создавая риски в таких областях, как юриспруденция, журналистика и медицина. Новый статистический метод, использующий оценщики неопределенности на основе энтропии, может обнаруживать эти «галлюцинации», оценивая неопределенность сгенерированного значения, а не конкретные последовательности слов, что повышает надежность, не требуя данных, специфичных для конкретной задачи. https://www.nature.com/articles/s41586-024-07421-0
2
Регрессия Пуассона против линейной регрессии
Линейная регрессия — не единственная линейная модель.

https://blog.dailydoseofds.com/p/poisson-regression-vs-linear-regression
👍1