پستگرس در عصر هوش مصنوعی: از انتخاب استارتاپها تا تمرکز غولهای فناوری
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
در نیمه اول ۲۰۲۵، #PostgreSQL بار دیگر نشان داد که فقط یک پایگاهداده نیست؛ بلکه قلب تپندهی تحول در زیرساختهای داده و هوش مصنوعی است. خبرهای مهم، سرمایهگذاریهای سنگین، و توسعه سریع اکوسیستمش، گویای یک واقعیت جدید هستند:
🧠 #پستگرس حالا یکی از بازیگران اصلی در عصر AI است.
🔹 📣 خبر داغ: #Snowflake + Crunchy Data = Snowflake Postgres
در کنفرانس Snowflake Summit 2025 اعلام شد:
💼 غول دنیای انبارههای داده ابری یعنی Snowflake شرکت Crunchy Data رو با ارزش ۲۵۰ میلیون دلار خرید.
🎯 هدف: توسعه یک نسخه سازمانی و تقویتشده از #PostgreSQL با تمرکز روی نیازهای AI و بارهای کاری حساس.
این خرید نشاندهنده تغییری بزرگ در استراتژی #Snowflake است؛ شرکتی که تا امروز بیشتر با انبار داده اختصاصیاش شناخته میشد.
🔹 سرمایهگذاریهای بزرگ دیگر:
💰 شرکت #Databricks، یکی از بازیگران اصلی حوزه #Lakehouse، استارتاپ #Neon رو با حدود ۱ میلیارد دلار خرید.
🌱 ابزار محبوب #Supabase، محبوبترین پلتفرم متنباز #PostgreSQL، در سری D مبلغ ۲۰۰ میلیون دلار جذب کرد (ارزشگذاری: ۲ میلیارد دلار).
📌 اینها نشون میدهند که #PostgreSQL از یک دیتابیس محبوب برای پروژههای کوچک، به زیرساخت اصلی پلتفرمهای داده نسل بعدی تبدیل شده.
🔹 چرا PostgreSQL اینقدر مهم شده؟
✅ انعطافپذیر و چندمنظوره: از SQL استاندارد تا JSON و جستجوی متنی
✅ قابل توسعه: اکستنشنهایی مثل pgvector برای دادههای برداری (AI/LLM)
✅ مقیاسپذیر: ابزارهایی مثل Citus و TimescaleDBبرای بارهای سنگین
✅ امن و متنباز: بدون vendor lock-in، با اکوسیستم غنی
📈 در دو سال اخیر:
🔹چندین افزونه برای جستجوی برداری
🔹ابزارهای اتصال PostgreSQL به LLMها
🔹و حتی ساخت لِیکهوس با PostgreSQL
منتشر شدهاند. این یعنی PostgreSQL آمادهی دنیای AI-first است.
اما یک نکته مهم دیگر وجود دارد :
🔹 از MVP تا Enterprise: مسیری طبیعی برای استارتاپها
بیشتر استارتاپها با PostgreSQL شروع میکنن چون:
👶 سریع، ساده، بدون هزینه لایسنس
🧪 ابزارهای کامل توسعه و تست
📚 مستندات و جامعه فعال
اما با رشد محصول و پیچیدهتر شدن نیازها، معمولاً به نسخههای Managed و Enterprise مهاجرت میکنن:
☁️ Azure Database for PostgreSQL
🧱 Crunchy Bridge
🏢 EDB Postgres Advanced
این پیوستگی از مرحله ایده تا سطح سازمانی یکی از مزیتهای نادر PostgreSQL در بازار امروز است و همین موضوع، توجیه کننده این خریدهای بزرگ در چند ماه اخیر و سرمایه گذاری بر روی پستگرس است.
البته امیدواریم با این اتفاق، نسخه بعدی پستگرس، بسیار حرفه ای و کامل تر شده باشند.
🎯 جمعبندی:
پستگرس حالا دیگر فقط "پایگاهداده موردعلاقه دولوپرها" نیست. بلکه تبدیل شده به زبان مشترک زیرساختهای داده در عصر AI — از گاراژ استارتاپها تا دیتاسنتر غولها.
#PostgreSQL #AI #DataInfra #DataEngineering #pgvector #StartupTools #EnterpriseTech #Snowflake #Databricks #Supabase #OpenSource #PostgresAI #DatabaseTrends #Lakehouse #MLOps
👍6
ساخت ETL با SQL؛ ساده، سریع و بدون وابستگی به زیرساخت سنگین
در دنیای مهندسی داده، ساخت یک فرآیند ETL معمولاً نیازمند زیرساختهایی پیچیده، ابزارهایی سنگین و دانش فنی نسبتاً بالا بود. اما اکنون، با ظهور ابزارهای سبک و ماژولار مانند DuckDB، میتوان همین فرآیند را با چند خط SQL ساده انجام داد؛ بدون نیاز به نصب پلتفرمهای حجیم یا نوشتن کدهای پیچیده.
🎬 فرض کنیم با دادههای جریانی سروکار دارید
کافکا یکی از متداولترین ابزارها برای مدیریت دادههای جریانی (streaming data) است. معمولاً برای خواندن این دادهها و انجام پردازش، به ابزارهایی مانند Apache Flink، Spark Streaming یا سیستمهای مدیریت جریان نیاز داریم.
اما حالا با افزونهای به نام Tributary برای DuckDB، میتوان مستقیماً از Kafka دادهها را خواند، پردازش کرد و به مقصد موردنظر نوشت – تماماً با SQL.
🧩 افزونه Tributary چه کاری انجام میدهد؟
افزونه Tributary یک افزونه رسمی برای DuckDB است که امکان اتصال مستقیم به Kafka را فراهم میکند. این افزونه با تابع tributary_scan_topic پیامهای Kafka را بهصورت یک جدول قابل خواندن در اختیار شما میگذارد:
در اینجا، دادههای Kafka بهصورت real-time به DuckDB وارد میشوند و آماده تحلیل، فیلتر یا انتقال به سیستمهای دیگر هستند.
🧩 اما خود DuckDB چیست؟
در دنیای مهندسی داده و تحلیل، ابزارهای سبک و مستقل نقش پررنگتری پیدا کردهاند. یکی از مهمترین این ابزارها، DuckDB است٫ یک پایگاه داده تحلیلی درونفرایندی (in-process analytical database) که میتوان آن را مشابه SQLite اما مخصوص تحلیلهای ستونی و پیچیده دانست.
در حالیکه SQLite برای تراکنشهای کوچک در موبایل و نرمافزارهای تعبیهشده طراحی شده، DuckDB برای تحلیلهای ستونی، پردازش سریع فایلهای Parquet و اجرای کوئریهای تحلیلی سنگین ساخته شده است — آن هم بدون نیاز به سرور یا نصب پیچیده..
💡 کاربردهای عملی این رویکرد چیست؟
✅ تحلیل سریع روی پیامهای Kafka بدون نیاز به سیستمهای تحلیلی سنگین.
✅ ساخت pipelineهای سبک ETL با استفاده از SQL.
✅ انتقال دادهها از Kafka به فایلهای Parquet، PostgreSQL، یا حتی ارسال مجدد به Kafka (با افزونههای مکمل مانند duckdb_kafka_sink).
⚙️ نحوه استفاده و راهاندازی
نصب و راهاندازی Tributary در DuckDB بسیار ساده است:
سپس تنها با چند خط SQL، به Kafka متصل میشوید و دادههای جریانی را پردازش میکنید.
🚀 یک گام به سوی آیندهی سادهتر در مهندسی داده
ابزارهایی مانند DuckDB به همراه افزونههایی مانند Tributary، نمایانگر جهتی هستند که دنیای داده به آن حرکت میکند: سادگی، ماژولار بودن، و استفاده حداکثری از زبان استاندارد SQL.
دیگر لازم نیست برای پیادهسازی یک ETL ساده، سیستمهای بزرگ و پیچیده مستقر شود. گاهی یک فایل SQL کافیست.
در صورتی که علاقهمند به ساخت ETL سبکوزن با SQL هستید یا به دنبال راهحلی ساده برای تحلیل جریان دادهها در Kafka میگردید، پیشنهاد میکنم حتماً نگاهی به افزونه Tributary بیندازید.
https://query.farm/duckdb_extension_tributary.html
پ.ن. عکس و ایده اصلی پست از مطلب زیر در لینکدین گرفته شده است:
https://www.linkedin.com/posts/rusty-conover_kafka-duckdb-streamingdata-activity-7339109125852676096-3QWs
در دنیای مهندسی داده، ساخت یک فرآیند ETL معمولاً نیازمند زیرساختهایی پیچیده، ابزارهایی سنگین و دانش فنی نسبتاً بالا بود. اما اکنون، با ظهور ابزارهای سبک و ماژولار مانند DuckDB، میتوان همین فرآیند را با چند خط SQL ساده انجام داد؛ بدون نیاز به نصب پلتفرمهای حجیم یا نوشتن کدهای پیچیده.
🎬 فرض کنیم با دادههای جریانی سروکار دارید
کافکا یکی از متداولترین ابزارها برای مدیریت دادههای جریانی (streaming data) است. معمولاً برای خواندن این دادهها و انجام پردازش، به ابزارهایی مانند Apache Flink، Spark Streaming یا سیستمهای مدیریت جریان نیاز داریم.
اما حالا با افزونهای به نام Tributary برای DuckDB، میتوان مستقیماً از Kafka دادهها را خواند، پردازش کرد و به مقصد موردنظر نوشت – تماماً با SQL.
🧩 افزونه Tributary چه کاری انجام میدهد؟
افزونه Tributary یک افزونه رسمی برای DuckDB است که امکان اتصال مستقیم به Kafka را فراهم میکند. این افزونه با تابع tributary_scan_topic پیامهای Kafka را بهصورت یک جدول قابل خواندن در اختیار شما میگذارد:
SELECT * FROM tributary_scan_topic('clicks_topic', "bootstrap.servers" := 'localhost:9092');در اینجا، دادههای Kafka بهصورت real-time به DuckDB وارد میشوند و آماده تحلیل، فیلتر یا انتقال به سیستمهای دیگر هستند.
🧩 اما خود DuckDB چیست؟
در دنیای مهندسی داده و تحلیل، ابزارهای سبک و مستقل نقش پررنگتری پیدا کردهاند. یکی از مهمترین این ابزارها، DuckDB است٫ یک پایگاه داده تحلیلی درونفرایندی (in-process analytical database) که میتوان آن را مشابه SQLite اما مخصوص تحلیلهای ستونی و پیچیده دانست.
در حالیکه SQLite برای تراکنشهای کوچک در موبایل و نرمافزارهای تعبیهشده طراحی شده، DuckDB برای تحلیلهای ستونی، پردازش سریع فایلهای Parquet و اجرای کوئریهای تحلیلی سنگین ساخته شده است — آن هم بدون نیاز به سرور یا نصب پیچیده..
💡 کاربردهای عملی این رویکرد چیست؟
✅ تحلیل سریع روی پیامهای Kafka بدون نیاز به سیستمهای تحلیلی سنگین.
✅ ساخت pipelineهای سبک ETL با استفاده از SQL.
✅ انتقال دادهها از Kafka به فایلهای Parquet، PostgreSQL، یا حتی ارسال مجدد به Kafka (با افزونههای مکمل مانند duckdb_kafka_sink).
⚙️ نحوه استفاده و راهاندازی
نصب و راهاندازی Tributary در DuckDB بسیار ساده است:
INSTALL tributary FROM community;
LOAD tributary;سپس تنها با چند خط SQL، به Kafka متصل میشوید و دادههای جریانی را پردازش میکنید.
🚀 یک گام به سوی آیندهی سادهتر در مهندسی داده
ابزارهایی مانند DuckDB به همراه افزونههایی مانند Tributary، نمایانگر جهتی هستند که دنیای داده به آن حرکت میکند: سادگی، ماژولار بودن، و استفاده حداکثری از زبان استاندارد SQL.
دیگر لازم نیست برای پیادهسازی یک ETL ساده، سیستمهای بزرگ و پیچیده مستقر شود. گاهی یک فایل SQL کافیست.
در صورتی که علاقهمند به ساخت ETL سبکوزن با SQL هستید یا به دنبال راهحلی ساده برای تحلیل جریان دادهها در Kafka میگردید، پیشنهاد میکنم حتماً نگاهی به افزونه Tributary بیندازید.
https://query.farm/duckdb_extension_tributary.html
پ.ن. عکس و ایده اصلی پست از مطلب زیر در لینکدین گرفته شده است:
https://www.linkedin.com/posts/rusty-conover_kafka-duckdb-streamingdata-activity-7339109125852676096-3QWs
استک دادههای مدرن: راهکاری برای آینده یا زبالهدانی پرزرقوبرق؟🔥
📌 این پست ترجمه و تلخیصشدهای است از مقالهای در Medium به قلم Timo de Vos
📄 لینک مقاله اصلی: The Modern Data Stack Is a Dumpster Fire
https://medium.com/@tfmv/the-modern-data-stack-is-a-dumpster-fire-b1aa81316d94
در سالهای اخیر، با رشد فضای فناوری داده، با موجی از ابزارها و چارچوبهای نوظهور مواجه بودهایم که زیر عنوان «استک داده مدرن» معرفی میشوند؛ از ابزارهای ETL بدون کدنویسی گرفته تا کوپایلوتهای مبتنی بر هوش مصنوعی و معماریهای پیچیده ابری.
اما سؤال اساسی که بسیاری از سازمانها در میانه راه با آن مواجه میشوند این است:
آیا کسبوکار ما واقعاً به این سطح از پیچیدگی نیاز دارد؟
⚠️ چالشهای پنهان در استکهای بهظاهر مدرن
بسیاری از تیمها، حتی در شرکتهای کوچک و استارتاپها، درگیر استکهایی میشوند که:
❗️ هزینههای عملیاتی پیشبینینشده به همراه دارند (مثل صورتحسابهای ابری چند ده هزار دلاری)
❗️ زمان راهاندازی و نگهداری بالا دارند (افزودن یک منبع داده = هفتهها هماهنگی)
❗️ اتکای بیشازحد به ابزارهای AI باعث بروز خطاهای غیرقابل ردیابی میشود (مثلاً Copilotهایی که پیشنهادهای اشتباه JOIN میدهند)
✅ رویکرد ساده و مؤثر Watershed
شرکت Watershed، ارائهدهنده پلتفرم داده برای ارزیابی و مدیریت پایداری سازمانی، یک مثال موفق از حرکت خلاف جریان است.
ویژگیهای معماری داده Watershed:
🟢 استفاده از ادغامهای ساده و آماده با سیستمهای رایج مانند Salesforce، NetSuite و...
🟢 پردازش دادهها با ابزارهای سبک و محلیمحور مانند DuckDB و Polars
🟢 حذف کامل نیاز به پایگاه دادههای عظیم یا پایپلاینهای پیچیده
🟢 تحویل گزارشهای حسابرسیپذیر سریع و دقیق به مشتریان بزرگ مانند Airbnb، Spotify و Visa
نتیجه؟ کاهش هزینهها، افزایش شفافیت، و حفظ کنترل کامل بر دادهها.
🧭 راهکارهایی برای طراحی استک داده ساده، مؤثر و پایدار
بر اساس تجربیات واقعی مانند Watershed و تحلیل دقیق مقاله، مسیر موفقیت در سادهسازی معماری داده شامل موارد زیر است:
1️⃣ سادگی ساختاری
معماری باید بهقدری ساده باشد که در کمتر از یک ساعت برای عضو جدید تیم قابل توضیح باشد.
2️⃣ پیچیدگی بر اساس نیاز
بیشتر سازمانها دادههای «واقعاً بزرگ» ندارند. پردازش صدها میلیون ردیف داده، روی یک لپتاپ مدرن با DuckDB یا Polars کاملاً امکانپذیر است.
3️⃣ مهاجرت تدریجی و کمهزینه
بهجای بازنویسی کامل استک فعلی، با ابزارهای سبک شروع کرده و به تدریج به سمت بهینهسازی حرکت کنید.
4️⃣ استفاده کنترلشده از هوش مصنوعی
هوش مصنوعی را برای کمک به توسعهدهنده بهکار ببرید، نه برای تصمیمگیری حیاتی در پردازش داده.
5️⃣ حذف ابزارهای بدون ارزش واقعی
اگر ابزاری ارزش افزوده ملموس ندارد، کنار گذاشته شود. سادگی = بهرهوری بیشتر.
✅ نتیجهگیری
مدرن بودن در مهندسی داده به معنی انباشت ابزارهای پیچیده و سنگین نیست، بلکه بهکارگیری هوشمندانه ابزارهایی است که با نیاز واقعی سازمان همراستا هستند.
🔹 گاهی یک اسکریپت ساده در Python به همراه DuckDB روی لپتاپ، کارآمدتر از یک کلاستر پیچیده و پرهزینه عمل میکند.
🔹 آینده معماری داده، در سادگی، شفافیت و سرعت پاسخگویی به نیاز کسبوکار نهفته است.
📌 این پست ترجمه و تلخیصشدهای است از مقالهای در Medium به قلم Timo de Vos
📄 لینک مقاله اصلی: The Modern Data Stack Is a Dumpster Fire
https://medium.com/@tfmv/the-modern-data-stack-is-a-dumpster-fire-b1aa81316d94
در سالهای اخیر، با رشد فضای فناوری داده، با موجی از ابزارها و چارچوبهای نوظهور مواجه بودهایم که زیر عنوان «استک داده مدرن» معرفی میشوند؛ از ابزارهای ETL بدون کدنویسی گرفته تا کوپایلوتهای مبتنی بر هوش مصنوعی و معماریهای پیچیده ابری.
اما سؤال اساسی که بسیاری از سازمانها در میانه راه با آن مواجه میشوند این است:
آیا کسبوکار ما واقعاً به این سطح از پیچیدگی نیاز دارد؟
⚠️ چالشهای پنهان در استکهای بهظاهر مدرن
بسیاری از تیمها، حتی در شرکتهای کوچک و استارتاپها، درگیر استکهایی میشوند که:
❗️ هزینههای عملیاتی پیشبینینشده به همراه دارند (مثل صورتحسابهای ابری چند ده هزار دلاری)
❗️ زمان راهاندازی و نگهداری بالا دارند (افزودن یک منبع داده = هفتهها هماهنگی)
❗️ اتکای بیشازحد به ابزارهای AI باعث بروز خطاهای غیرقابل ردیابی میشود (مثلاً Copilotهایی که پیشنهادهای اشتباه JOIN میدهند)
📉 یک مثال واقعی: تیمی «مدرن» که برای ساخت سه داشبورد ساده، بالغ بر ۴۰۰,۰۰۰ دلار هزینه کرد؛ در حالیکه رقیبشان، با DuckDB و یک اسکریپت پایتون ساده، در کمتر از یک روز همان نتایج را بهدست آورد.
✅ رویکرد ساده و مؤثر Watershed
شرکت Watershed، ارائهدهنده پلتفرم داده برای ارزیابی و مدیریت پایداری سازمانی، یک مثال موفق از حرکت خلاف جریان است.
ویژگیهای معماری داده Watershed:
🟢 استفاده از ادغامهای ساده و آماده با سیستمهای رایج مانند Salesforce، NetSuite و...
🟢 پردازش دادهها با ابزارهای سبک و محلیمحور مانند DuckDB و Polars
🟢 حذف کامل نیاز به پایگاه دادههای عظیم یا پایپلاینهای پیچیده
🟢 تحویل گزارشهای حسابرسیپذیر سریع و دقیق به مشتریان بزرگ مانند Airbnb، Spotify و Visa
نتیجه؟ کاهش هزینهها، افزایش شفافیت، و حفظ کنترل کامل بر دادهها.
🧭 راهکارهایی برای طراحی استک داده ساده، مؤثر و پایدار
بر اساس تجربیات واقعی مانند Watershed و تحلیل دقیق مقاله، مسیر موفقیت در سادهسازی معماری داده شامل موارد زیر است:
1️⃣ سادگی ساختاری
معماری باید بهقدری ساده باشد که در کمتر از یک ساعت برای عضو جدید تیم قابل توضیح باشد.
2️⃣ پیچیدگی بر اساس نیاز
بیشتر سازمانها دادههای «واقعاً بزرگ» ندارند. پردازش صدها میلیون ردیف داده، روی یک لپتاپ مدرن با DuckDB یا Polars کاملاً امکانپذیر است.
3️⃣ مهاجرت تدریجی و کمهزینه
بهجای بازنویسی کامل استک فعلی، با ابزارهای سبک شروع کرده و به تدریج به سمت بهینهسازی حرکت کنید.
4️⃣ استفاده کنترلشده از هوش مصنوعی
هوش مصنوعی را برای کمک به توسعهدهنده بهکار ببرید، نه برای تصمیمگیری حیاتی در پردازش داده.
5️⃣ حذف ابزارهای بدون ارزش واقعی
اگر ابزاری ارزش افزوده ملموس ندارد، کنار گذاشته شود. سادگی = بهرهوری بیشتر.
✅ نتیجهگیری
مدرن بودن در مهندسی داده به معنی انباشت ابزارهای پیچیده و سنگین نیست، بلکه بهکارگیری هوشمندانه ابزارهایی است که با نیاز واقعی سازمان همراستا هستند.
🔹 گاهی یک اسکریپت ساده در Python به همراه DuckDB روی لپتاپ، کارآمدتر از یک کلاستر پیچیده و پرهزینه عمل میکند.
🔹 آینده معماری داده، در سادگی، شفافیت و سرعت پاسخگویی به نیاز کسبوکار نهفته است.
❤1
https://x.com/hejazizo/status/1939250468699423088?t=mnyhQdoIOgTowag3fhwz-g&s=19
آقا بهترین کورس ماشینلرنینگی که میشد رو دارم کامل آپلود میکنم روی یوتیوب. اینقدر این دوره کامل و ترکیبی از تئوری و مباحث practical شد خودم خیلی کیف کردم. خلاصه که اگه میخواین یاد بگیرین همه چیز رو توی این دوره گفتم
آقا بهترین کورس ماشینلرنینگی که میشد رو دارم کامل آپلود میکنم روی یوتیوب. اینقدر این دوره کامل و ترکیبی از تئوری و مباحث practical شد خودم خیلی کیف کردم. خلاصه که اگه میخواین یاد بگیرین همه چیز رو توی این دوره گفتم
X (formerly Twitter)
Ali (@hejazizo) on X
آقا بهترین کورس ماشینلرنینگی که میشد رو دارم کامل آپلود میکنم روی یوتیوب. اینقدر این دوره کامل و ترکیبی از تئوری و مباحث practical شد خودم خیلی کیف کردم. خلاصه که اگه میخواین یاد بگیرین همه چیز رو توی این دوره گفتم.
https://t.co/5gGUU00gk6
https://t.co/5gGUU00gk6
❤7
کافکا رفت و انقلاب شد! در ویدئو جدید درباره Kafka Raft صحبت میکنیم تا باهم ببینیم کافکا چطوری به این تحمل خطای بالا رسیده است.
اگر دوست دارین بدونید KRaft چطوری کار میکنه این ویدئو ببینید 💣
00:55 مروری بر Raft
11:50 نقش Zookeeper چیست؟
18:08 در کافکا Control Plan و Data Plan چیست؟
19:45 بررسی چند سناریو failover در zookeeper
26:38 بهبود های Raft در Kafka
32:30 ساختار متفاوت KRaft به نسبت Raft
36:30 سناریو failover در KRaft
46:10 رشد دیتا در کافکا بینهایت است؟
لینک ویدئو: https://lnkd.in/e_zcfRc5
پلی لیست: Kafka Like a Pro (https://lnkd.in/e9KghDuD)
مدت ویدئو: 48 دقیقه
https://www.youtube.com/watch?v=ZT2V4d4lxAo&ab_channel=CodeWithHSN
اگر دوست دارین بدونید KRaft چطوری کار میکنه این ویدئو ببینید 💣
00:55 مروری بر Raft
11:50 نقش Zookeeper چیست؟
18:08 در کافکا Control Plan و Data Plan چیست؟
19:45 بررسی چند سناریو failover در zookeeper
26:38 بهبود های Raft در Kafka
32:30 ساختار متفاوت KRaft به نسبت Raft
36:30 سناریو failover در KRaft
46:10 رشد دیتا در کافکا بینهایت است؟
لینک ویدئو: https://lnkd.in/e_zcfRc5
پلی لیست: Kafka Like a Pro (https://lnkd.in/e9KghDuD)
مدت ویدئو: 48 دقیقه
https://www.youtube.com/watch?v=ZT2V4d4lxAo&ab_channel=CodeWithHSN
lnkd.in
LinkedIn
This link will take you to a page that’s not on LinkedIn
👍3❤1
آینده مهندسی داده از نگاه نتفلیکس، Airbnb و Databricks 🚀
📌 اوایل خرداد، نتفلیکس در رویداد سالانهی خود یعنی Data Engineering Open Forum 2025، پنلی جذاب با عنوان «آینده مهندسی داده» برگزار کرد که در آن سه متخصص از غولهای فناوری دیدگاههایشان را درباره آینده این حوزه به اشتراک گذاشتند.
🔸 Tikica (مدیر پنل – مهندس ارشد نتفلیکس)
🔸 Ryan Blue (همبنیانگذار Databricks و سازنده Iceberg)
🔸 Jerry (مهندس ارشد Airbnb)
🔸 Ena (مهندس داده در نتفلیکس)
در این پنل، از مسیرهای شغلی تا چالشهای امروز و مهارتهای فردا صحبت شد. خلاصهای از نکات مطرحشده را در ادامه میخوانید:
🎥 ویدئوی ۲۰ دقیقهای این پنل: https://www.youtube.com/watch?v=VVWjdsuNrwE&ab_channel=NetflixEngineering
🔮 ۱. هوشمصنوعی؛ دستیار قدرتمند، نه تهدید
💬 برخلاف تصور رایج، #GenAI شغل مهندس داده را تهدید نمیکند، بلکه ابزار توانمندی برای کمک در کارهای پیچیده و تکراریست:
✅ بازنویسی کوئری و کمک در مهاجرت
✅ بهبود مستندسازی و تسهیل پلتفرم
✅ تمرکز بیشتر بر حل مسائل کسبوکار
✅ ارتقاء کیفیت کد
🔍 اما این تحولات، نیاز به دادهی باکیفیت، مستند و شفاف را دوچندان میکند.
⚠️۲. چالشهای فعلی در #مهندسی_داده
مهندسی داده دیگر فقط ساختن چند جدول و اجرای ETL نیست.
با رشد دادهها، ابزارها و انتظارات، چالشها هم رشد کردهاند:
🚨 بررسی مشکلات کیفی در دادههایی که وارد مدلهای LLM میشوند بسیار سختتر است. برخلاف داشبورد یا A/B تستها، این مدلها شفاف نیستند.
🌐 اتصال بین انبارههای داده آفلاین، آنلاین و اپلیکیشنهای واقعی محصولمحور، باعث شده دیتاپایپلاینها بسیار پیچیدهتر شوند.
🛡 نگرانیهای جدیدی دربارهی حریم خصوصی، لو رفتن اطلاعات حساس و نحوهی کنترل دادههای تولیدشده توسط LLMها شکل گرفته است.
🎥 مهاجرت به دادههای چندرسانهای (متن، تصویر، ویدیو) نیاز به مهارت و ابزارهایی دارد که خیلی از ما هنوز با آنها آشنا نیستیم.
🧠 ۳. مهارتهای کلیدی برای آینده
پنلیستها تاکید کردند که مسیر موفقیت همچنان از «پایههای مهندسی قوی» میگذرد:
📌 مدلسازی دقیق داده
📌 درک ساختارها
📌 تعهد به کیفیت
اما برای آینده، باید مهارتهای زیر را نیز توسعه داد:
🔹 پردازش real-time و event-driven
🔹 آشنایی با جستجوی معنایی و vector DBها
🔹 توانایی پردازش دادههای multimodal
🔹 یادگیری ابزارهای مدرن مانند #DBT، #DuckDB، #PyIceberg و...
🧭 ۴. تشخیص ابزار مفید از ترندهای هیجانی
چطور بین ابزارهای واقعی و ترندهای زودگذر فرق بگذاریم؟
پنل نکات خوبی دربارهی انتخاب تکنولوژی مناسب داشت:
✅ آیا این ابزار واقعاً کار ما را سادهتر میکند؟
✅ فقط نحوهی استفادهاش را بلدم یا میدانم چرا و چطور کار میکند؟
✅ آیا جامعه توسعهدهنده و کامیونیتی فعالی دارد؟
✅ آیا به نیاز واقعی بیزینس پاسخ میدهد؟
📌 جمعبندی:
آیندهی مهندسی داده، ترکیبیست از پایههای محکم فنی و یادگیری هوشمندانهی ابزارهای جدید.
اگر هوشمند انتخاب کنیم و یاد بگیریم، GenAI حامی ماست، نه جایگزین ما.
#مهندسی_داده #GenAI #LLM #DataEngineering #Netflix #Airbnb #Databricks #DataQuality #AItools #OpenSource #TechTrends #آینده_شغلی
📌 اوایل خرداد، نتفلیکس در رویداد سالانهی خود یعنی Data Engineering Open Forum 2025، پنلی جذاب با عنوان «آینده مهندسی داده» برگزار کرد که در آن سه متخصص از غولهای فناوری دیدگاههایشان را درباره آینده این حوزه به اشتراک گذاشتند.
🔸 Tikica (مدیر پنل – مهندس ارشد نتفلیکس)
🔸 Ryan Blue (همبنیانگذار Databricks و سازنده Iceberg)
🔸 Jerry (مهندس ارشد Airbnb)
🔸 Ena (مهندس داده در نتفلیکس)
در این پنل، از مسیرهای شغلی تا چالشهای امروز و مهارتهای فردا صحبت شد. خلاصهای از نکات مطرحشده را در ادامه میخوانید:
🎥 ویدئوی ۲۰ دقیقهای این پنل: https://www.youtube.com/watch?v=VVWjdsuNrwE&ab_channel=NetflixEngineering
🔮 ۱. هوشمصنوعی؛ دستیار قدرتمند، نه تهدید
💬 برخلاف تصور رایج، #GenAI شغل مهندس داده را تهدید نمیکند، بلکه ابزار توانمندی برای کمک در کارهای پیچیده و تکراریست:
✅ بازنویسی کوئری و کمک در مهاجرت
✅ بهبود مستندسازی و تسهیل پلتفرم
✅ تمرکز بیشتر بر حل مسائل کسبوکار
✅ ارتقاء کیفیت کد
🔍 اما این تحولات، نیاز به دادهی باکیفیت، مستند و شفاف را دوچندان میکند.
⚠️۲. چالشهای فعلی در #مهندسی_داده
مهندسی داده دیگر فقط ساختن چند جدول و اجرای ETL نیست.
با رشد دادهها، ابزارها و انتظارات، چالشها هم رشد کردهاند:
🚨 بررسی مشکلات کیفی در دادههایی که وارد مدلهای LLM میشوند بسیار سختتر است. برخلاف داشبورد یا A/B تستها، این مدلها شفاف نیستند.
🌐 اتصال بین انبارههای داده آفلاین، آنلاین و اپلیکیشنهای واقعی محصولمحور، باعث شده دیتاپایپلاینها بسیار پیچیدهتر شوند.
🛡 نگرانیهای جدیدی دربارهی حریم خصوصی، لو رفتن اطلاعات حساس و نحوهی کنترل دادههای تولیدشده توسط LLMها شکل گرفته است.
🎥 مهاجرت به دادههای چندرسانهای (متن، تصویر، ویدیو) نیاز به مهارت و ابزارهایی دارد که خیلی از ما هنوز با آنها آشنا نیستیم.
🧠 ۳. مهارتهای کلیدی برای آینده
پنلیستها تاکید کردند که مسیر موفقیت همچنان از «پایههای مهندسی قوی» میگذرد:
📌 مدلسازی دقیق داده
📌 درک ساختارها
📌 تعهد به کیفیت
اما برای آینده، باید مهارتهای زیر را نیز توسعه داد:
🔹 پردازش real-time و event-driven
🔹 آشنایی با جستجوی معنایی و vector DBها
🔹 توانایی پردازش دادههای multimodal
🔹 یادگیری ابزارهای مدرن مانند #DBT، #DuckDB، #PyIceberg و...
🧭 ۴. تشخیص ابزار مفید از ترندهای هیجانی
چطور بین ابزارهای واقعی و ترندهای زودگذر فرق بگذاریم؟
پنل نکات خوبی دربارهی انتخاب تکنولوژی مناسب داشت:
✅ آیا این ابزار واقعاً کار ما را سادهتر میکند؟
✅ فقط نحوهی استفادهاش را بلدم یا میدانم چرا و چطور کار میکند؟
✅ آیا جامعه توسعهدهنده و کامیونیتی فعالی دارد؟
✅ آیا به نیاز واقعی بیزینس پاسخ میدهد؟
📌 جمعبندی:
آیندهی مهندسی داده، ترکیبیست از پایههای محکم فنی و یادگیری هوشمندانهی ابزارهای جدید.
اگر هوشمند انتخاب کنیم و یاد بگیریم، GenAI حامی ماست، نه جایگزین ما.
#مهندسی_داده #GenAI #LLM #DataEngineering #Netflix #Airbnb #Databricks #DataQuality #AItools #OpenSource #TechTrends #آینده_شغلی
👍5❤2
داستان تولد یک Graph Engine متفاوت: آشنایی با PuppyGraph🐾
تصور کنید دادههای شما در دیتابیسهای کلاسیک رابطهای مثل #PostgreSQL یا در دیتالِیکهایی مثل #Snowflake یا #Iceberg ذخیره شدهاند.
حجم دادهها بالاست، اتصالها پیچیدهاند، و شما بهعنوان مهندس داده میخواهید تحلیلهای ارتباطی اجرا کنید:
مثل کشف مسیرهای غیرمستقیم بین کاربران، تشخیص حلقههای تراکنشی، یا تحلیل وابستگی در جریان داده.
در اکثر ابزارهای سنتی، برای رسیدن به این نوع بینشها باید داده را استخراج کنید، آن را به فرمت گراف تبدیل کرده و در یک گرافدیتابیس جداگانه بارگذاری کنید. این یعنی:
عملیات #ETL سنگین و زمانبر ⏳
نیاز به زیرساخت گراف مستقل ⚙️
مشکلات همگامسازی داده بین دو سیستم 🔄
💡 اینجا PuppyGraph وارد میشود
پاپیگراف یک Graph Query Engine مدرن و سریع است که با یک رویکرد ساده و انقلابی کار میکند:
«بهجای انتقال داده به یک گرافدیتابیس، چرا گراف را همانجا که داده هست اجرا نکنیم؟»
🔍 چه چیزی PuppyGraph را متفاوت میکند؟
✅ بدون ETL: مستقیماً روی منابع دادهای مانند PostgreSQL، MySQL، Snowflake، Delta Lake یا Iceberg کار میکند.
✅ بدون کپی داده: داده در محل خود باقی میماند، PuppyGraph فقط آن را گرافی تفسیر میکند.
✅ اجرای سریع کوئریهای چندهاپی: حتی 10-hop traversal در کمتر از چند ثانیه، روی میلیاردها لبه.
✅ سازگار با زبانهای گراف استاندارد: از Gremlin و Cypher برای کوئری استفاده کنید، درست مثل Neo4j.
✅ معماری مقیاسپذیر و توزیعشده: طراحیشده برای محیطهای تحلیلی مدرن، با تفکیک compute و storage.
🎯 چه کاربردهایی دارد؟
موتور تحلیل گراف PuppyGraph بهویژه برای تحلیلهایی که ماهیت گرافی دارند عالی است، از جمله:
✅ کشف تقلب در تراکنشها یا شبکههای مالی
✅ تحلیل رفتار کاربران و مسیرهای ارتباطی آنها
✅ درک ساختارهای وابستگی در خطوط داده یا سیستمها
✅ تحلیل شبکههای سازمانی، صنعتی یا IoT
✅ ساخت گراف مفهومی از دادههای پراکنده بدون زیرساخت جدید
🧪 تجربه کار با PuppyGraph
راهاندازی آن ساده است: با Docker یا روی Databricks و AWS در کمتر از ۱۰ دقیقه آماده کار میشود.
تنها کاری که باید بکنید تعریف اسکیمای گرافی با چند خط JSON است—و بعد میتوانید همان دادهای را که همیشه با SQL کوئری میکردید، اینبار از منظر گراف ببینید و تحلیل کنید.
🐶 چرا اسمش PuppyGraph است؟
چون مثل یک تولهسگ هوشمند، سریع، چابک و کمتوقع است. خودش را بهراحتی با محیط شما وفق میدهد، سروصدای زیادی ندارد و کاری که باید انجام دهد را بهخوبی انجام میدهد.
📣 اگر تجربهای در گرافتحلیل داشتهاید یا دنبال راهی برای اجرای گراف روی دادههای رابطهای بدون مهاجرت هستید، PuppyGraph قطعاً یکی از گزینههایی است که باید آن را جدی بگیرید.
💼 و اما : وضعیت لایسنس و نسخهها
نسخه رایگان و متنباز PuppyGraph با نام Developer Edition در دسترس است، اما این نسخه تنها از یک نود پشتیبانی میکند و برای محیطهای کوچک و تستی مناسب است.
اگر بخواهید در محیطهای تولیدی حرفهای از آن استفاده کنید—با امکاناتی مثل مقیاسپذیری افقی، مانیتورینگ، چند کاربر و قابلیتهای امنیتی پیشرفته—باید از نسخه Enterprise استفاده کنید که دارای مجوز تجاری و هزینهبر است اما هزینه آن از نگهداری یک دیتابیس گرافی جداگانه و پایپلاینهای ETL لازم برای ورود مداوم داده در آن، بسیار کمتر است.
#GraphAnalytics #DataEngineering #GraphDatabase #PuppyGraph
تصور کنید دادههای شما در دیتابیسهای کلاسیک رابطهای مثل #PostgreSQL یا در دیتالِیکهایی مثل #Snowflake یا #Iceberg ذخیره شدهاند.
حجم دادهها بالاست، اتصالها پیچیدهاند، و شما بهعنوان مهندس داده میخواهید تحلیلهای ارتباطی اجرا کنید:
مثل کشف مسیرهای غیرمستقیم بین کاربران، تشخیص حلقههای تراکنشی، یا تحلیل وابستگی در جریان داده.
در اکثر ابزارهای سنتی، برای رسیدن به این نوع بینشها باید داده را استخراج کنید، آن را به فرمت گراف تبدیل کرده و در یک گرافدیتابیس جداگانه بارگذاری کنید. این یعنی:
عملیات #ETL سنگین و زمانبر ⏳
نیاز به زیرساخت گراف مستقل ⚙️
مشکلات همگامسازی داده بین دو سیستم 🔄
💡 اینجا PuppyGraph وارد میشود
پاپیگراف یک Graph Query Engine مدرن و سریع است که با یک رویکرد ساده و انقلابی کار میکند:
«بهجای انتقال داده به یک گرافدیتابیس، چرا گراف را همانجا که داده هست اجرا نکنیم؟»
🔍 چه چیزی PuppyGraph را متفاوت میکند؟
✅ بدون ETL: مستقیماً روی منابع دادهای مانند PostgreSQL، MySQL، Snowflake، Delta Lake یا Iceberg کار میکند.
✅ بدون کپی داده: داده در محل خود باقی میماند، PuppyGraph فقط آن را گرافی تفسیر میکند.
✅ اجرای سریع کوئریهای چندهاپی: حتی 10-hop traversal در کمتر از چند ثانیه، روی میلیاردها لبه.
✅ سازگار با زبانهای گراف استاندارد: از Gremlin و Cypher برای کوئری استفاده کنید، درست مثل Neo4j.
✅ معماری مقیاسپذیر و توزیعشده: طراحیشده برای محیطهای تحلیلی مدرن، با تفکیک compute و storage.
🎯 چه کاربردهایی دارد؟
موتور تحلیل گراف PuppyGraph بهویژه برای تحلیلهایی که ماهیت گرافی دارند عالی است، از جمله:
✅ کشف تقلب در تراکنشها یا شبکههای مالی
✅ تحلیل رفتار کاربران و مسیرهای ارتباطی آنها
✅ درک ساختارهای وابستگی در خطوط داده یا سیستمها
✅ تحلیل شبکههای سازمانی، صنعتی یا IoT
✅ ساخت گراف مفهومی از دادههای پراکنده بدون زیرساخت جدید
🧪 تجربه کار با PuppyGraph
راهاندازی آن ساده است: با Docker یا روی Databricks و AWS در کمتر از ۱۰ دقیقه آماده کار میشود.
تنها کاری که باید بکنید تعریف اسکیمای گرافی با چند خط JSON است—و بعد میتوانید همان دادهای را که همیشه با SQL کوئری میکردید، اینبار از منظر گراف ببینید و تحلیل کنید.
🐶 چرا اسمش PuppyGraph است؟
چون مثل یک تولهسگ هوشمند، سریع، چابک و کمتوقع است. خودش را بهراحتی با محیط شما وفق میدهد، سروصدای زیادی ندارد و کاری که باید انجام دهد را بهخوبی انجام میدهد.
📣 اگر تجربهای در گرافتحلیل داشتهاید یا دنبال راهی برای اجرای گراف روی دادههای رابطهای بدون مهاجرت هستید، PuppyGraph قطعاً یکی از گزینههایی است که باید آن را جدی بگیرید.
💼 و اما : وضعیت لایسنس و نسخهها
نسخه رایگان و متنباز PuppyGraph با نام Developer Edition در دسترس است، اما این نسخه تنها از یک نود پشتیبانی میکند و برای محیطهای کوچک و تستی مناسب است.
اگر بخواهید در محیطهای تولیدی حرفهای از آن استفاده کنید—با امکاناتی مثل مقیاسپذیری افقی، مانیتورینگ، چند کاربر و قابلیتهای امنیتی پیشرفته—باید از نسخه Enterprise استفاده کنید که دارای مجوز تجاری و هزینهبر است اما هزینه آن از نگهداری یک دیتابیس گرافی جداگانه و پایپلاینهای ETL لازم برای ورود مداوم داده در آن، بسیار کمتر است.
#GraphAnalytics #DataEngineering #GraphDatabase #PuppyGraph
❤3
راهنمای حرفهای ساخت پایپلاینهای ETL/ELT با Apache Airflow
📘 نگاهی خلاصه به ایبوک ۴۴ صفحهای Astronomer
در سالهای اخیر، Apache Airflow به استانداردی در حوزهی مدیریت وظایف زمانبندیشده و ارکستراسیون دادهها تبدیل شده است. نسخهی ۳ این ابزار، با ویژگیهای حرفهایتری همچون:
✅ پشتیبانی از Multi-DAG Deployment
✅ اجرای مبتنی بر event از طریق Triggerer
✅ قابلیت DAG Versioning
✅ مصرف مستقیم از Kafka
✅ امکان XCom backendهای سفارشی
✅ Dynamic Task Mapping و Data-driven Scheduling
آن را به انتخابی قدرتمند برای محیطهای پیچیده دادهای و تولیدی تبدیل کرده است.
🔍 اخیراً شرکت Astronomer که خدمات Airflow در فضای ابری را ارائه میدهد، یک راهنمای جامع ۴۴ صفحهای با عنوان Best Practices for ETL and ELT Pipelines with Apache Airflow منتشر کرده است که شامل نکات کاربردی و بهروز برای ساخت پایپلاینهای حرفهای است.
🗂 خلاصه فهرست مطالب ایبوک:
📌 مفاهیم پایهای
تعریف ETL و ELT، بررسی تفاوتها و سناریوهای ترکیبی (ETLT)
📌 تصمیمات مهم معماری
انتخاب بین XCom یا storage خارجی، اجرای محاسبات درون Airflow یا بیرون، انتخاب اپراتورها، بررسی کیفیت داده
📌 بهترین شیوههای نوشتن DAG
ساختار اتمی، idempotent و ماژولار — جلوگیری از top-level code — تنظیم Retry — پیادهسازی CI/CD و تست
📌 مقیاسپذیری و محیط اجرا
تنظیمات مقیاس در سطح DAG، تسک و محیط — توصیههای زیرساختی برای استقرار تولیدی
📌 ویژگیهای حرفهای Airflow
• امکان Dynamic Task Mapping
• تولید DAGها بهصورت برنامهنویسیشده
• امکان Task Group ماژولار
• زمانبندی مبتنی بر Dataset
• مدیریت فضای ذخیره سازی - Airflow Object Storage
• استفاده از Kafka و قابلیت DAG Versioning
📌 اتصالات و Providerهای مهم
مروری بر AWS, GCP, Azure, Snowflake, dbt, Spark, Ray, PostgreSQL و Cosmos برای dbt
📌 چکلیست نهایی + معرفی Astronomer
چکلیستی کامل برای ارزیابی پایپلاینها و مرور امکانات پلتفرم Astronomer
📥 دانلود فایل PDF در پست بعدی 👇
#ApacheAirflow #Kafka #ETL #ELT #DataEngineering #OpenSource #Python #مهندسی_داده #پایپلاین_داده #Airflow3
📘 نگاهی خلاصه به ایبوک ۴۴ صفحهای Astronomer
در سالهای اخیر، Apache Airflow به استانداردی در حوزهی مدیریت وظایف زمانبندیشده و ارکستراسیون دادهها تبدیل شده است. نسخهی ۳ این ابزار، با ویژگیهای حرفهایتری همچون:
✅ پشتیبانی از Multi-DAG Deployment
✅ اجرای مبتنی بر event از طریق Triggerer
✅ قابلیت DAG Versioning
✅ مصرف مستقیم از Kafka
✅ امکان XCom backendهای سفارشی
✅ Dynamic Task Mapping و Data-driven Scheduling
آن را به انتخابی قدرتمند برای محیطهای پیچیده دادهای و تولیدی تبدیل کرده است.
یکی از رایجترین کاربردهای Airflow، ساخت پایپلاینهای ETL/ELT است. اما در دنیای امروز با حجم بالای داده، معماریهای پیچیده و نیاز به مقیاسپذیری بالا، پیادهسازی این پایپلاینها بهگونهای که قابلاعتماد، مانیتورپذیر و توسعهپذیر باشند، چالشبرانگیز شده است.
🔍 اخیراً شرکت Astronomer که خدمات Airflow در فضای ابری را ارائه میدهد، یک راهنمای جامع ۴۴ صفحهای با عنوان Best Practices for ETL and ELT Pipelines with Apache Airflow منتشر کرده است که شامل نکات کاربردی و بهروز برای ساخت پایپلاینهای حرفهای است.
🗂 خلاصه فهرست مطالب ایبوک:
📌 مفاهیم پایهای
تعریف ETL و ELT، بررسی تفاوتها و سناریوهای ترکیبی (ETLT)
📌 تصمیمات مهم معماری
انتخاب بین XCom یا storage خارجی، اجرای محاسبات درون Airflow یا بیرون، انتخاب اپراتورها، بررسی کیفیت داده
📌 بهترین شیوههای نوشتن DAG
ساختار اتمی، idempotent و ماژولار — جلوگیری از top-level code — تنظیم Retry — پیادهسازی CI/CD و تست
📌 مقیاسپذیری و محیط اجرا
تنظیمات مقیاس در سطح DAG، تسک و محیط — توصیههای زیرساختی برای استقرار تولیدی
📌 ویژگیهای حرفهای Airflow
• امکان Dynamic Task Mapping
• تولید DAGها بهصورت برنامهنویسیشده
• امکان Task Group ماژولار
• زمانبندی مبتنی بر Dataset
• مدیریت فضای ذخیره سازی - Airflow Object Storage
• استفاده از Kafka و قابلیت DAG Versioning
📌 اتصالات و Providerهای مهم
مروری بر AWS, GCP, Azure, Snowflake, dbt, Spark, Ray, PostgreSQL و Cosmos برای dbt
📌 چکلیست نهایی + معرفی Astronomer
چکلیستی کامل برای ارزیابی پایپلاینها و مرور امکانات پلتفرم Astronomer
📥 دانلود فایل PDF در پست بعدی 👇
#ApacheAirflow #Kafka #ETL #ELT #DataEngineering #OpenSource #Python #مهندسی_داده #پایپلاین_داده #Airflow3
❤1
راهنمای حرفهای ساخت پایپلاینهای ETL/ELT با Apache Airflow
📘 نگاهی خلاصه به ایبوک ۴۴ صفحهای Astronomer
در سالهای اخیر، Apache Airflow به استانداردی در حوزهی مدیریت وظایف زمانبندیشده و ارکستراسیون دادهها تبدیل شده است. نسخهی ۳ این ابزار، با ویژگیهای حرفهایتری همچون:
✅ پشتیبانی از Multi-DAG Deployment
✅ اجرای مبتنی بر event از طریق Triggerer
✅ قابلیت DAG Versioning
✅ مصرف مستقیم از Kafka
✅ امکان XCom backendهای سفارشی
✅ امکان Dynamic Task Mapping و Data-driven Scheduling
آن را به انتخابی قدرتمند برای محیطهای پیچیده دادهای و تولیدی تبدیل کرده است.
🔍 اخیراً شرکت Astronomer که خدمات Airflow در فضای ابری را ارائه میدهد، یک راهنمای جامع ۴۴ صفحهای با عنوان Best Practices for ETL and ELT Pipelines with Apache Airflow منتشر کرده است که شامل نکات کاربردی و بهروز برای ساخت پایپلاینهای حرفهای است.
🗂 خلاصه فهرست مطالب ایبوک:
📌 مفاهیم پایهای
تعریف ETL و ELT، بررسی تفاوتها و سناریوهای ترکیبی (ETLT)
📌 تصمیمات مهم معماری
انتخاب بین XCom یا storage خارجی، اجرای محاسبات درون Airflow یا بیرون، انتخاب اپراتورها، بررسی کیفیت داده
📌 بهترین شیوههای نوشتن DAG
ساختار اتمی، idempotent و ماژولار — جلوگیری از top-level code — تنظیم Retry — پیادهسازی CI/CD و تست
📌 مقیاسپذیری و محیط اجرا
تنظیمات مقیاس در سطح DAG، تسک و محیط — توصیههای زیرساختی برای استقرار تولیدی
📌 ویژگیهای حرفهای Airflow
• امکان Dynamic Task Mapping
• تولید DAGها بهصورت برنامهنویسیشده
• امکان Task Group ماژولار
• زمانبندی مبتنی بر Dataset
• مدیریت فضای ذخیره سازی - Airflow Object Storage
• استفاده از Kafka و قابلیت DAG Versioning
📌 اتصالات و Providerهای مهم
مروری بر AWS, GCP, Azure, Snowflake, dbt, Spark, Ray, PostgreSQL و Cosmos برای dbt
📌 چکلیست نهایی + معرفی Astronomer
چکلیستی کامل برای ارزیابی پایپلاینها و مرور امکانات پلتفرم Astronomer
📥 دانلود فایل PDF در پست بعدی 👇
#ApacheAirflow #Kafka #ETL #ELT #DataEngineering #OpenSource #Python #مهندسی_داده #پایپلاین_داده #Airflow3
📘 نگاهی خلاصه به ایبوک ۴۴ صفحهای Astronomer
در سالهای اخیر، Apache Airflow به استانداردی در حوزهی مدیریت وظایف زمانبندیشده و ارکستراسیون دادهها تبدیل شده است. نسخهی ۳ این ابزار، با ویژگیهای حرفهایتری همچون:
✅ پشتیبانی از Multi-DAG Deployment
✅ اجرای مبتنی بر event از طریق Triggerer
✅ قابلیت DAG Versioning
✅ مصرف مستقیم از Kafka
✅ امکان XCom backendهای سفارشی
✅ امکان Dynamic Task Mapping و Data-driven Scheduling
آن را به انتخابی قدرتمند برای محیطهای پیچیده دادهای و تولیدی تبدیل کرده است.
یکی از رایجترین کاربردهای Airflow، ساخت پایپلاینهای ETL/ELT است. اما در دنیای امروز با حجم بالای داده، معماریهای پیچیده و نیاز به مقیاسپذیری بالا، پیادهسازی این پایپلاینها بهگونهای که قابلاعتماد، مانیتورپذیر و توسعهپذیر باشند، چالشبرانگیز شده است.
🔍 اخیراً شرکت Astronomer که خدمات Airflow در فضای ابری را ارائه میدهد، یک راهنمای جامع ۴۴ صفحهای با عنوان Best Practices for ETL and ELT Pipelines with Apache Airflow منتشر کرده است که شامل نکات کاربردی و بهروز برای ساخت پایپلاینهای حرفهای است.
🗂 خلاصه فهرست مطالب ایبوک:
📌 مفاهیم پایهای
تعریف ETL و ELT، بررسی تفاوتها و سناریوهای ترکیبی (ETLT)
📌 تصمیمات مهم معماری
انتخاب بین XCom یا storage خارجی، اجرای محاسبات درون Airflow یا بیرون، انتخاب اپراتورها، بررسی کیفیت داده
📌 بهترین شیوههای نوشتن DAG
ساختار اتمی، idempotent و ماژولار — جلوگیری از top-level code — تنظیم Retry — پیادهسازی CI/CD و تست
📌 مقیاسپذیری و محیط اجرا
تنظیمات مقیاس در سطح DAG، تسک و محیط — توصیههای زیرساختی برای استقرار تولیدی
📌 ویژگیهای حرفهای Airflow
• امکان Dynamic Task Mapping
• تولید DAGها بهصورت برنامهنویسیشده
• امکان Task Group ماژولار
• زمانبندی مبتنی بر Dataset
• مدیریت فضای ذخیره سازی - Airflow Object Storage
• استفاده از Kafka و قابلیت DAG Versioning
📌 اتصالات و Providerهای مهم
مروری بر AWS, GCP, Azure, Snowflake, dbt, Spark, Ray, PostgreSQL و Cosmos برای dbt
📌 چکلیست نهایی + معرفی Astronomer
چکلیستی کامل برای ارزیابی پایپلاینها و مرور امکانات پلتفرم Astronomer
📥 دانلود فایل PDF در پست بعدی 👇
#ApacheAirflow #Kafka #ETL #ELT #DataEngineering #OpenSource #Python #مهندسی_داده #پایپلاین_داده #Airflow3
👍2❤1
V4_Best_practices_for_ETL_and_ELT_pipelines_with_Apache_Airflow.pdf
14 MB
فایل راهنمای حرفهای ساخت پایپلاینهای ETL/ELT با Apache Airflow - 👆👆
👍4
الگوریتم توصیه گر توییتر؛ هنوز هم منبع الهام است—even if you’re not Elon 😄
درست است که بیش از دو سال از متنباز شدن الگوریتم توصیه گر توئیتر یا همان بخش «For You» توییتر گذشته، اما این پروژه هنوز هم از آن نمونههاییست که میتوان بارها و بارها به آن برگشت و نکات تازهای از دلش بیرون کشید. چرا؟ چون وقتی قلب الگوریتمی که روزانه برای میلیاردها نفر محتوا پیشنهاد میدهد را ببینید، فقط بحث کد نیست—بلکه با یک زیستبوم پیچیده از تصمیمگیری، مدلسازی و حتی طنز مواجه میشوید. بیایید این مخزن کد را خیلی سریع و بدون وارد شدن در جزییات فنی آن مرور کنیم.
https://github.com/FareedKhan-dev/KG-Pipeline.git
🔍 چه خبر در دل الگوریتم؟
الگوریتم توصیهگر توییتر از چند مرحله اصلی تشکیل شده:
✅ انتخاب توئیتهای اولیه - Candidate Sources
ابتدا توییتر از بین صدها میلیون توییت، حدود ۱۵۰۰ توییت «نامزد» را انتخاب میکند—هم از کسانی که دنبالشان میکنید (In-Network) و هم غریبهها (Out-of-Network).
✅ بخش Ranking
این توییتها سپس توسط یک مدل عصبی با بیش از ۴۸ میلیون پارامتر رتبهبندی میشوند. هدف؟ پیشبینی احتمال تعامل مثبت شما با هر توییت.
✅ فیلتر و اعمال الگوریتمهای مکاشفهای - Heuristics and Filters
حالا نوبت انواع و اقسام فیلترهاست؛ از فیلتر کردن محتوای تکراری و حسابهای بلاکشده گرفته تا یک فیلتر خاص بهنام author_is_elon 😅 که اگر نویسنده توییت ایلان ماسک باشد، شرایط متفاوتی اعمال میشود!
🎯 و این تازه اول ماجراست... توئیتهای اولیه را چگونه پیدا کنیم ؟
📌 یکی از بخشهای جالب الگوریتم، بررسی گرایشهای سیاسی است. فیلترهایی وجود دارد که حتی در سطوح مختلف بررسی میکند آیا یک توییت به گرایشهای دموکرات یا جمهوریخواه نزدیک است یا خیر. (بله! الگوریتم هم سیاستزده شده 😄) و شما به کدام گرایش سیاسی نزدیکتر هستید!
📌 بخش «Embedding Spaces» الگوریتم، کاربران و توییتها را وارد فضای برداریای میکند که بر اساس شباهت علایق و محتوا عمل میکند و یافتن سریع توئیتهای کاندید اولیه را ممکن میکند. یکی از مشهورترین این فضاها، SimClusters است.
📌 این کامیونیتیها (Communities) در SimClusters، از گروههای کوچک دوستانه گرفته تا کل جمعیت علاقهمند به سیاست یا موسیقی پاپ را در بر میگیرند—و جالبتر اینجاست که هر سه هفته یکبار دوباره آموزش داده میشوند و جایگاه ما در این جامعهها مدام بهروزرسانی میشود. نتیجه؟ توییتهایی که میبینیم کاملاً وابسته است به اینکه در آن لحظه، ما در کدام کامیونیتی قرار داریم.
🤖 داستان الگوریتم توییتر چیزی فراتر از مهندسی است
این سیستم نهتنها با دادههای تعاملات انسانی تغذیه میشود، بلکه خودش هم بازتابی از ساختارهای اجتماعی و فکری کاربرانش است. شفافسازی توییتر با متنباز کردن چنین سیستمی، فارغ از انگیزههای تجاری، یک حرکت جسورانه در تاریخ الگوریتمهای شخصیسازی بود.
📁 پروژه در GitHub هنوز پابرجاست. و اگر تا حالا نرفتید نگاهش بندازید، مطمئن باشید چیزهایی خواهید دید که فقط در مستندهای نتفلیکس انتظارش را دارید!
🧠 آیا ما نیاز به ساخت الگوریتمی مشابه داریم؟ شاید.
📊 آیا میتوان از ایدههای آن در سیستمهای توصیهگر فروشگاهی، شبکههای اجتماعی یا پلتفرمهای محتوایی استفاده کرد؟ قطعاً.
#الگوریتم_توصیهگر #مهندسی_داده #توییتر #توسعه_دهنده #یادگیری_ماشین #توسعه_متن_باز #SimClusters #GraphJet #ML #Scala #ForYou
درست است که بیش از دو سال از متنباز شدن الگوریتم توصیه گر توئیتر یا همان بخش «For You» توییتر گذشته، اما این پروژه هنوز هم از آن نمونههاییست که میتوان بارها و بارها به آن برگشت و نکات تازهای از دلش بیرون کشید. چرا؟ چون وقتی قلب الگوریتمی که روزانه برای میلیاردها نفر محتوا پیشنهاد میدهد را ببینید، فقط بحث کد نیست—بلکه با یک زیستبوم پیچیده از تصمیمگیری، مدلسازی و حتی طنز مواجه میشوید. بیایید این مخزن کد را خیلی سریع و بدون وارد شدن در جزییات فنی آن مرور کنیم.
https://github.com/FareedKhan-dev/KG-Pipeline.git
🔍 چه خبر در دل الگوریتم؟
الگوریتم توصیهگر توییتر از چند مرحله اصلی تشکیل شده:
✅ انتخاب توئیتهای اولیه - Candidate Sources
ابتدا توییتر از بین صدها میلیون توییت، حدود ۱۵۰۰ توییت «نامزد» را انتخاب میکند—هم از کسانی که دنبالشان میکنید (In-Network) و هم غریبهها (Out-of-Network).
✅ بخش Ranking
این توییتها سپس توسط یک مدل عصبی با بیش از ۴۸ میلیون پارامتر رتبهبندی میشوند. هدف؟ پیشبینی احتمال تعامل مثبت شما با هر توییت.
✅ فیلتر و اعمال الگوریتمهای مکاشفهای - Heuristics and Filters
حالا نوبت انواع و اقسام فیلترهاست؛ از فیلتر کردن محتوای تکراری و حسابهای بلاکشده گرفته تا یک فیلتر خاص بهنام author_is_elon 😅 که اگر نویسنده توییت ایلان ماسک باشد، شرایط متفاوتی اعمال میشود!
🎯 و این تازه اول ماجراست... توئیتهای اولیه را چگونه پیدا کنیم ؟
📌 یکی از بخشهای جالب الگوریتم، بررسی گرایشهای سیاسی است. فیلترهایی وجود دارد که حتی در سطوح مختلف بررسی میکند آیا یک توییت به گرایشهای دموکرات یا جمهوریخواه نزدیک است یا خیر. (بله! الگوریتم هم سیاستزده شده 😄) و شما به کدام گرایش سیاسی نزدیکتر هستید!
📌 بخش «Embedding Spaces» الگوریتم، کاربران و توییتها را وارد فضای برداریای میکند که بر اساس شباهت علایق و محتوا عمل میکند و یافتن سریع توئیتهای کاندید اولیه را ممکن میکند. یکی از مشهورترین این فضاها، SimClusters است.
📌 این کامیونیتیها (Communities) در SimClusters، از گروههای کوچک دوستانه گرفته تا کل جمعیت علاقهمند به سیاست یا موسیقی پاپ را در بر میگیرند—و جالبتر اینجاست که هر سه هفته یکبار دوباره آموزش داده میشوند و جایگاه ما در این جامعهها مدام بهروزرسانی میشود. نتیجه؟ توییتهایی که میبینیم کاملاً وابسته است به اینکه در آن لحظه، ما در کدام کامیونیتی قرار داریم.
🤖 داستان الگوریتم توییتر چیزی فراتر از مهندسی است
این سیستم نهتنها با دادههای تعاملات انسانی تغذیه میشود، بلکه خودش هم بازتابی از ساختارهای اجتماعی و فکری کاربرانش است. شفافسازی توییتر با متنباز کردن چنین سیستمی، فارغ از انگیزههای تجاری، یک حرکت جسورانه در تاریخ الگوریتمهای شخصیسازی بود.
📁 پروژه در GitHub هنوز پابرجاست. و اگر تا حالا نرفتید نگاهش بندازید، مطمئن باشید چیزهایی خواهید دید که فقط در مستندهای نتفلیکس انتظارش را دارید!
🧠 آیا ما نیاز به ساخت الگوریتمی مشابه داریم؟ شاید.
📊 آیا میتوان از ایدههای آن در سیستمهای توصیهگر فروشگاهی، شبکههای اجتماعی یا پلتفرمهای محتوایی استفاده کرد؟ قطعاً.
#الگوریتم_توصیهگر #مهندسی_داده #توییتر #توسعه_دهنده #یادگیری_ماشین #توسعه_متن_باز #SimClusters #GraphJet #ML #Scala #ForYou
اگر رهبر یک تیم دیتا هستید (یا قصد دارید باشید)، این ریپازیتوری را از دست ندهید:
🔗 Data Team Handbook
https://github.com/sdg-1/data-team-handbook/
راهنمایی جامع برای مدیریت مؤثر تیمهای داده، با دهها منبع دستچینشده برای چالشهای واقعی:
✅ گذار از IC به مدیر
✅ رشد مهارت اعضای تیم
✅ مدیریت پروژههای دیتا
✅ بهینهسازی زیرساخت، هزینه و ابزارها
✅ تمپلیتها و چکلیستهای قابل استفاده
📚 منابع شامل:
بهترین کتابها در مدیریت فنی و مهندسی داده
مقالات دقیق درباره DataOps، Data Culture و Team Structure
ویدیوهای آموزشی از لیدهای فنی در Amazon، Google و Stripe
چرا این منبع برای شما ضروریست؟
🛠 دستهبندی بر اساس چالشهای واقعی
انتقال از مهندس اختصاصی (IC) به نقش مدیریت
مقیاسبندی زیرساخت (ETL/ELT، CDC، Data Warehouse)
طراحی پایداری و مانیتورینگ خطوط داده
بهینهسازی هزینه و انتخابِ سرویسهای ابری
📈 افزایش بهرهوری تیم
الگوهای پروژه و تمپلیتهای CI/CD برای دیتاپایپلاین
چکلیست ۳۰-۶۰-۹۰ روز اول برای آنبوردینگ سریع
چگونه دستورات SQL حرفه ای بنویسیم و بهترین رویههای کوئرینویسی
🤝 رشد و نگهداشت استعداد
الگوهای مصاحبه و ارزیابی مهارتهای داده
استراتژیهای حفظ نیروی کلیدی در مقابل ترک پروژه
🎓 منابع آموزشی برتر
کتابهای کلیدی (An Elegant Puzzle, Data Teams Model)
مقالات عمیق در معماری داده، فرهنگ مهندسی و مدیریت فنی
ویدیوهای عملی از مهندسین ارشد گوگل، آمازون و Netflix
🧩 همه چیز دستهبندیشده بر اساس چالشهای رایج، نه صرفاً نوع محتوا.
🌍 متنباز و مشارکتپذیر – میتوانید منابع خود را هم اضافه کنید!
hashtag#DataEngineering hashtag#DataTeams hashtag#DataLeadership hashtag#ETL hashtag#DataInfra hashtag#TeamManagement hashtag#SeattleDataGuy hashtag#دیتا hashtag#مهندسی_داده hashtag#مدیریت_تیم
🔗 Data Team Handbook
https://github.com/sdg-1/data-team-handbook/
راهنمایی جامع برای مدیریت مؤثر تیمهای داده، با دهها منبع دستچینشده برای چالشهای واقعی:
✅ گذار از IC به مدیر
✅ رشد مهارت اعضای تیم
✅ مدیریت پروژههای دیتا
✅ بهینهسازی زیرساخت، هزینه و ابزارها
✅ تمپلیتها و چکلیستهای قابل استفاده
📚 منابع شامل:
بهترین کتابها در مدیریت فنی و مهندسی داده
مقالات دقیق درباره DataOps، Data Culture و Team Structure
ویدیوهای آموزشی از لیدهای فنی در Amazon، Google و Stripe
چرا این منبع برای شما ضروریست؟
🛠 دستهبندی بر اساس چالشهای واقعی
انتقال از مهندس اختصاصی (IC) به نقش مدیریت
مقیاسبندی زیرساخت (ETL/ELT، CDC، Data Warehouse)
طراحی پایداری و مانیتورینگ خطوط داده
بهینهسازی هزینه و انتخابِ سرویسهای ابری
📈 افزایش بهرهوری تیم
الگوهای پروژه و تمپلیتهای CI/CD برای دیتاپایپلاین
چکلیست ۳۰-۶۰-۹۰ روز اول برای آنبوردینگ سریع
چگونه دستورات SQL حرفه ای بنویسیم و بهترین رویههای کوئرینویسی
🤝 رشد و نگهداشت استعداد
الگوهای مصاحبه و ارزیابی مهارتهای داده
استراتژیهای حفظ نیروی کلیدی در مقابل ترک پروژه
🎓 منابع آموزشی برتر
کتابهای کلیدی (An Elegant Puzzle, Data Teams Model)
مقالات عمیق در معماری داده، فرهنگ مهندسی و مدیریت فنی
ویدیوهای عملی از مهندسین ارشد گوگل، آمازون و Netflix
🧩 همه چیز دستهبندیشده بر اساس چالشهای رایج، نه صرفاً نوع محتوا.
🌍 متنباز و مشارکتپذیر – میتوانید منابع خود را هم اضافه کنید!
hashtag#DataEngineering hashtag#DataTeams hashtag#DataLeadership hashtag#ETL hashtag#DataInfra hashtag#TeamManagement hashtag#SeattleDataGuy hashtag#دیتا hashtag#مهندسی_داده hashtag#مدیریت_تیم
GitHub
GitHub - sdg-1/data-team-handbook
Contribute to sdg-1/data-team-handbook development by creating an account on GitHub.
👍2
MCP Server.pdf
16.7 MB
کتابی ساده و روان برای یادگیری مفهوم MCP که امروزه همه جا در مورد آن می شنویم. (در حوزه هوش مصنوعی البته )
👍3
شروعی حرفهای برای ورود به دنیای مهندسی داده – رایگان و بینالمللی🎓
در دنیای امروز، یادگیری مهارتهای عملی و نزدیک به پروژههای واقعی، مهمترین مزیت رقابتی برای ورود به بازار کار حوزه داده است.
اگر شما هم به دنبال فرصتی برای یادگیری ساختیافته، کاربردی، و تحت نظر یک تیم متخصص بینالمللی هستید، این بوتکمپ رایگان مهندسی داده یک فرصت بینظیر است.
👨🏫 برگزارکننده: Zach Wilson
مؤسس DataExpert.io و از شناختهشدهترین چهرههای حوزه داده با بیش از ۱ میلیون دنبالکننده در شبکههای اجتماعی.
او بهواسطه تجربه بالا، سادگی در بیان مفاهیم پیچیده، و طراحی مسیرهای یادگیری عملی، توانسته اعتماد هزاران نفر در سراسر دنیا را جلب کند.
🏫 درباره بوتکمپ:
بوتکمپ ۶ هفتهای "Community Edition" با هدف توانمندسازی علاقهمندان به مهندسی داده، به صورت رایگان و با تمرکز بر مهارتهای کاربردی برگزار میشود.
این برنامه آموزشی، ترکیبی از ویدیوهای آموزشی، تمرینهای هفتگی با ارزیابی خودکار، پروژههای واقعی، و در نهایت صدور مدرک پایان دوره است.
🧠 سرفصلهای آموزشی:
📚 مدلسازی دادههای بعدی و واقعی – طراحی ساختارهای تحلیلی پیشرفته
📚 پردازش دادههای کلان با سرعت بالا - Apache Spark و PySpark
📚 ساخت پایپلاینهای بلادرنگ و مدیریت جریان داده - Apache Flink و Kafka
📚 الگوهای تحلیلی و طراحی شاخصهای کلیدی عملکرد (KPI)
📚 کیفیت داده و مستندسازی حرفهای مانند Airbnb
📚 مصورسازی داده با Tableau و ارائه اثرگذار یافتهها
📚نگهداری و بهبود پایپلاینهای دادهای در محیط واقعی
🎯 چرا این بوتکمپ ارزشمند است؟
🔹 نگاه عملیاتی و واقعی به مسائل مهندسی داده
🔹 طراحی شده توسط تیمی با تجربه بینالمللی و پروژههای کلان
🔹 یادگیری مبتنی بر سناریوهای واقعی شغلی
🔹 مناسب برای افرادی که بهدنبال مهاجرت شغلی، ارتقای جایگاه کاری یا ورود به بازارهای جهانی هستند
🔹 امکان تعامل با جامعه جهانی مهندسان داده در Discord
🔹 دریافت مدرک پایان دوره بهصورت رسمی
📥 مراحل ثبتنام:
ثبتنام رایگان در سایت: learn.dataexpert.io
دریافت هندبوک و تمرینها: https://github.com/DataExpert-io/data-engineer-handbook
عضویت در کامیونیتی و گروه پشتیبانی در دیسکورد: لینک عضویت
ارسال تمرینهای هفتگی – برای حفظ نظم و یادگیری تدریجی
📌 تا امروز بیش از ۵۰ هزار نفر از سراسر دنیا ثبتنام کردهاند
🎯 زک ویلسون پیشبینی کرده تنها حدود ۵۰۰ نفر به پایان مسیر و دریافت گواهی میرسند
اگر دنبال تعهد، رشد حرفهای و یادگیری واقعی هستی، تو هم یکی از آنها باش.
جزو ۱٪ افراد مصمم باش!
#بوتکمپ_داده #مهندسی_داده #DataEngineering #ApacheSpark #Flink #Kafka #SQL #Python #DataQuality #Tableau #آموزش_کاربردی #مدرک_بینالمللی #ZackWilson #DataExpert #دوره_رایگان #DataCareer
در دنیای امروز، یادگیری مهارتهای عملی و نزدیک به پروژههای واقعی، مهمترین مزیت رقابتی برای ورود به بازار کار حوزه داده است.
اگر شما هم به دنبال فرصتی برای یادگیری ساختیافته، کاربردی، و تحت نظر یک تیم متخصص بینالمللی هستید، این بوتکمپ رایگان مهندسی داده یک فرصت بینظیر است.
👨🏫 برگزارکننده: Zach Wilson
مؤسس DataExpert.io و از شناختهشدهترین چهرههای حوزه داده با بیش از ۱ میلیون دنبالکننده در شبکههای اجتماعی.
او بهواسطه تجربه بالا، سادگی در بیان مفاهیم پیچیده، و طراحی مسیرهای یادگیری عملی، توانسته اعتماد هزاران نفر در سراسر دنیا را جلب کند.
🏫 درباره بوتکمپ:
بوتکمپ ۶ هفتهای "Community Edition" با هدف توانمندسازی علاقهمندان به مهندسی داده، به صورت رایگان و با تمرکز بر مهارتهای کاربردی برگزار میشود.
این برنامه آموزشی، ترکیبی از ویدیوهای آموزشی، تمرینهای هفتگی با ارزیابی خودکار، پروژههای واقعی، و در نهایت صدور مدرک پایان دوره است.
🧠 سرفصلهای آموزشی:
📚 مدلسازی دادههای بعدی و واقعی – طراحی ساختارهای تحلیلی پیشرفته
📚 پردازش دادههای کلان با سرعت بالا - Apache Spark و PySpark
📚 ساخت پایپلاینهای بلادرنگ و مدیریت جریان داده - Apache Flink و Kafka
📚 الگوهای تحلیلی و طراحی شاخصهای کلیدی عملکرد (KPI)
📚 کیفیت داده و مستندسازی حرفهای مانند Airbnb
📚 مصورسازی داده با Tableau و ارائه اثرگذار یافتهها
📚نگهداری و بهبود پایپلاینهای دادهای در محیط واقعی
🎯 چرا این بوتکمپ ارزشمند است؟
🔹 نگاه عملیاتی و واقعی به مسائل مهندسی داده
🔹 طراحی شده توسط تیمی با تجربه بینالمللی و پروژههای کلان
🔹 یادگیری مبتنی بر سناریوهای واقعی شغلی
🔹 مناسب برای افرادی که بهدنبال مهاجرت شغلی، ارتقای جایگاه کاری یا ورود به بازارهای جهانی هستند
🔹 امکان تعامل با جامعه جهانی مهندسان داده در Discord
🔹 دریافت مدرک پایان دوره بهصورت رسمی
📥 مراحل ثبتنام:
ثبتنام رایگان در سایت: learn.dataexpert.io
دریافت هندبوک و تمرینها: https://github.com/DataExpert-io/data-engineer-handbook
عضویت در کامیونیتی و گروه پشتیبانی در دیسکورد: لینک عضویت
ارسال تمرینهای هفتگی – برای حفظ نظم و یادگیری تدریجی
📌 تا امروز بیش از ۵۰ هزار نفر از سراسر دنیا ثبتنام کردهاند
🎯 زک ویلسون پیشبینی کرده تنها حدود ۵۰۰ نفر به پایان مسیر و دریافت گواهی میرسند
اگر دنبال تعهد، رشد حرفهای و یادگیری واقعی هستی، تو هم یکی از آنها باش.
جزو ۱٪ افراد مصمم باش!
#بوتکمپ_داده #مهندسی_داده #DataEngineering #ApacheSpark #Flink #Kafka #SQL #Python #DataQuality #Tableau #آموزش_کاربردی #مدرک_بینالمللی #ZackWilson #DataExpert #دوره_رایگان #DataCareer
GitHub
GitHub - DataExpert-io/data-engineer-handbook: This is a repo with links to everything you'd ever want to learn about data engineering
This is a repo with links to everything you'd ever want to learn about data engineering - DataExpert-io/data-engineer-handbook
❤1
This media is not supported in your browser
VIEW IN TELEGRAM
نحوه ثبت نام توی بوت کمپ شش هفته ای مهندسی داده . 👆👆
👍3❤1
عاشقان دیتا لیکهوس، این ریپو گنج واقعی مهندسی داده است! 💻
اگر در حوزه دیتا لیکهوس فعالیت میکنید یا تازه به این دنیای پرهیجان و آیندهدار مهندسی داده علاقهمند شدید، مخزن کد awesome-lakehouse-guide یه منبع بینظیره که نباید از دستش بدید! 🌟
اینجا یه مجموعه کامل و بهروز برای تسلط بر فرمتهای جدولی باز (Apache Hudi، Apache Iceberg، Delta Lake) و معماری لیکهوس پیدا میکنید:
🔍 مقالات تحقیقاتی: از BtrBlocks و Apache Arrow تا AWS Glue و Apache Flink، با تحلیلهای عمیق درباره بهینهسازی ذخیرهسازی، عملکرد کوئریها و قابلیتهای ACID.
📝 بلاگهای کاربردی: آموزشهای عملی برای حل چالشهایی مثل metadata bloat، بهینهسازی با Z-ordering و مدیریت دادههای نزدیک به real-time.
💻 کد و نوتبوک: مثالهای آماده برای ایجاد جدولهای Hudi و Iceberg روی Amazon S3، اجرای کلاستریگ و پیادهسازی CDC (Change Data Capture).
📣 پستهای لینکدین: نکات سریع و بهروز درباره موضوعاتی مثل پردازش برداری و Apache Arrow.
🗂 فعالیت اخیر: بهروزرسانیهای دو هفته پیش (تا ۱۵ تیر ۱۴۰۴) شامل README و پستهای لینکدین، نشوندهنده نگهداری فعال این ریپوئه. یه تصویر معماری (lkh_res.png) هم برای درک بهتر لیکهوس موجوده!
این ریپو یه نقشه راه کامل برای حرفهای شدن در لیکهوسه، چه بخواید تئوری یاد بگیرید، چه دست به کد بشید! 🚀
🔗 مشاهده ریپو : https://github.com/dipankarmazumdar/awesome-lakehouse-guide
#DataEngineering #Lakehouse #BigData #OpenSource #DataLakehouse
اگر در حوزه دیتا لیکهوس فعالیت میکنید یا تازه به این دنیای پرهیجان و آیندهدار مهندسی داده علاقهمند شدید، مخزن کد awesome-lakehouse-guide یه منبع بینظیره که نباید از دستش بدید! 🌟
اینجا یه مجموعه کامل و بهروز برای تسلط بر فرمتهای جدولی باز (Apache Hudi، Apache Iceberg، Delta Lake) و معماری لیکهوس پیدا میکنید:
🔍 مقالات تحقیقاتی: از BtrBlocks و Apache Arrow تا AWS Glue و Apache Flink، با تحلیلهای عمیق درباره بهینهسازی ذخیرهسازی، عملکرد کوئریها و قابلیتهای ACID.
📝 بلاگهای کاربردی: آموزشهای عملی برای حل چالشهایی مثل metadata bloat، بهینهسازی با Z-ordering و مدیریت دادههای نزدیک به real-time.
💻 کد و نوتبوک: مثالهای آماده برای ایجاد جدولهای Hudi و Iceberg روی Amazon S3، اجرای کلاستریگ و پیادهسازی CDC (Change Data Capture).
📣 پستهای لینکدین: نکات سریع و بهروز درباره موضوعاتی مثل پردازش برداری و Apache Arrow.
🗂 فعالیت اخیر: بهروزرسانیهای دو هفته پیش (تا ۱۵ تیر ۱۴۰۴) شامل README و پستهای لینکدین، نشوندهنده نگهداری فعال این ریپوئه. یه تصویر معماری (lkh_res.png) هم برای درک بهتر لیکهوس موجوده!
این ریپو یه نقشه راه کامل برای حرفهای شدن در لیکهوسه، چه بخواید تئوری یاد بگیرید، چه دست به کد بشید! 🚀
🔗 مشاهده ریپو : https://github.com/dipankarmazumdar/awesome-lakehouse-guide
#DataEngineering #Lakehouse #BigData #OpenSource #DataLakehouse
GitHub
GitHub - dipankarmazumdar/awesome-lakehouse-guide: Repo for everything open table formats (Iceberg, Hudi, Delta Lake) and the overall…
Repo for everything open table formats (Iceberg, Hudi, Delta Lake) and the overall Lakehouse architecture - dipankarmazumdar/awesome-lakehouse-guide
❤2👍2
نقشه راه Data 3.0 در عصر Lakehouse
خلاصهای از گزارش Bessemer Venture Partners که معماری لیکهوس را در دوران مدرن، بسیار آیندهدار دانسته است. بیایید آنرا با هم مرور کنیم.
📌 https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
🔍 چرا Data 3.0 اهمیت دارد؟
مدیریت دادهها طی سه نسل دستخوش تحولات عظیمی شده است:
📦 نسخه اول - Data 1.0 (۱۹۷۰–۲۰۰۰):
✅ تمرکز بر پایگاههای داده رابطهای (Oracle، MySQL)
✅ استفاده از انبارهای دادهای
❌ محدودیت در مقیاسپذیری
❌ ناتوان در پردازش دادههای غیرساختاریافته
🌊 نسخه دوم - Data 2.0 (از ۲۰۱۰ به بعد):
✅ ظهور Hadoop و Spark برای پردازش دادههای متنوع و حجیم
✅ انعطافپذیری بیشتر
❌ باتلاق دادهای (Data Swamp) بهدلیل ضعف در کیفیت و حاکمیت
🚀 نسخه سوم - Data 3.0 (از ۲۰۲۰ به بعد):
✅ یکپارچگی
✅ پردازش لحظهای
✅ استفاده از هوش مصنوعی
📌 ابزارهای کلیدی: Lakehouse، Delta Lake، Iceberg، Hudi، خطوط لوله AI-driven
💡 معماری Lakehouse چیست و چرا انقلابی است؟
ویژگیهای کلیدی:
📌 پشتیبانی از دادههای ساختاریافته و غیرساختاریافته
📌 فرمتهای باز با قابلیتهای ACID، Time Travel، پردازش لحظهای
📌 کاهش افزونگی داده و وابستگی به Vendorها
این معماری پایهای برای توسعه ابزارهای تحلیلی و برنامههای AI در مقیاس بزرگ است.
🔮 چهار روند کلیدی در Data 3.0 به روایت BVP
1️⃣ خطوط لوله هوشمند و لحظهای
🛠 ابزارهای جدید: Prefect، Windmill، dltHub
⚙️ فناوریهای جریانی: Apache Flink، Kafka
⚡️ پلتفرمهای بلادرنگ مانند Chalk برای تصمیمگیری سریع
2️⃣ متادیتا بهعنوان منبع حقیقت
🛠 ابزارهایی مانند Datastrato، Acryl Data
💡 بهینهسازهایی مثل Flarion.io و Greybeam
3️⃣ تحول در موتورهای محاسباتی:
🛠 موتورهای سبک و سریع: DuckDB، ClickHouse، Daft
🌕 بسترهای Iceberg-native مثل Mooncake و Bauplan و RisingWave
4️⃣ ادغام مهندسی داده و نرمافزار:
🧩 ابزارهایی مانند dbt و Gable
🔄 یکپارچهسازی با CI/CD، نسخهسازی، تست خودکار
💸 فرصتهای سرمایهگذاری و نوآوری
BVP باور دارد که Data 3.0 فرصت بیسابقهای برای بنیانگذاران ایجاد کرده تا:
🔧 ابزارهای منبعباز و ابری جدید بسازند
🚀 موتورهای بهینهشده برای AI ارائه دهند
📊 راهحلهای هوشمند برای متادیتا خلق کنند
📌 جمعبندی : معماری Lakehouse نماد تحول در مدیریت دادههاست:
✔️ عملکرد بالا
✔️ تحلیل لحظهای
✔️ پشتیبانی از AI
✔️ مقیاسپذیری بالا
آینده از آن تیمهایی است که به جای مدیریت زیرساختهای پیچیده، بر خلق ارزش از دادهها تمرکز میکنند.
🏷 #Data3 #Lakehouse #AI #Metadata #StreamingData #DuckDB #Iceberg #DeltaLake #BVP #DataEngineering #ModernDataStack #RealTimeAnalytics #OpenSource #DataInfra #Startup #DataPlatform #VentureCapital #FutureOfData
خلاصهای از گزارش Bessemer Venture Partners که معماری لیکهوس را در دوران مدرن، بسیار آیندهدار دانسته است. بیایید آنرا با هم مرور کنیم.
📌 https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
شرکت سرمایهگذاری Bessemer Venture Partners (BVP) که سابقهای بیش از یک قرن در حمایت از شرکتهای نوآور در حوزههای ابری، فینتک، 🤖 هوش مصنوعی و 🛡 امنیت سایبری دارد، اخیراً گزارشی با عنوان «نقشه راه: Data 3.0 در عصر #Lakehouse» منتشر کرده است. این گزارش با تکیه بر تجربه BVP در سرمایهگذاری بر برندهایی مانند Shopify، LinkedIn، Pinterest و Databricks، چشماندازی دقیق از نسل سوم زیرساختهای داده ارائه میدهد.
🔍 چرا Data 3.0 اهمیت دارد؟
مدیریت دادهها طی سه نسل دستخوش تحولات عظیمی شده است:
📦 نسخه اول - Data 1.0 (۱۹۷۰–۲۰۰۰):
✅ تمرکز بر پایگاههای داده رابطهای (Oracle، MySQL)
✅ استفاده از انبارهای دادهای
❌ محدودیت در مقیاسپذیری
❌ ناتوان در پردازش دادههای غیرساختاریافته
🌊 نسخه دوم - Data 2.0 (از ۲۰۱۰ به بعد):
✅ ظهور Hadoop و Spark برای پردازش دادههای متنوع و حجیم
✅ انعطافپذیری بیشتر
❌ باتلاق دادهای (Data Swamp) بهدلیل ضعف در کیفیت و حاکمیت
🚀 نسخه سوم - Data 3.0 (از ۲۰۲۰ به بعد):
✅ یکپارچگی
✅ پردازش لحظهای
✅ استفاده از هوش مصنوعی
📌 ابزارهای کلیدی: Lakehouse، Delta Lake، Iceberg، Hudi، خطوط لوله AI-driven
💡 معماری Lakehouse چیست و چرا انقلابی است؟
لیکهوس ترکیبی از قدرت Data Warehouse و انعطاف Data Lake است.
ویژگیهای کلیدی:
📌 پشتیبانی از دادههای ساختاریافته و غیرساختاریافته
📌 فرمتهای باز با قابلیتهای ACID، Time Travel، پردازش لحظهای
📌 کاهش افزونگی داده و وابستگی به Vendorها
این معماری پایهای برای توسعه ابزارهای تحلیلی و برنامههای AI در مقیاس بزرگ است.
🔮 چهار روند کلیدی در Data 3.0 به روایت BVP
1️⃣ خطوط لوله هوشمند و لحظهای
🛠 ابزارهای جدید: Prefect، Windmill، dltHub
⚙️ فناوریهای جریانی: Apache Flink، Kafka
⚡️ پلتفرمهای بلادرنگ مانند Chalk برای تصمیمگیری سریع
2️⃣ متادیتا بهعنوان منبع حقیقت
🛠 ابزارهایی مانند Datastrato، Acryl Data
💡 بهینهسازهایی مثل Flarion.io و Greybeam
3️⃣ تحول در موتورهای محاسباتی:
🛠 موتورهای سبک و سریع: DuckDB، ClickHouse، Daft
🌕 بسترهای Iceberg-native مثل Mooncake و Bauplan و RisingWave
4️⃣ ادغام مهندسی داده و نرمافزار:
🧩 ابزارهایی مانند dbt و Gable
🔄 یکپارچهسازی با CI/CD، نسخهسازی، تست خودکار
💸 فرصتهای سرمایهگذاری و نوآوری
BVP باور دارد که Data 3.0 فرصت بیسابقهای برای بنیانگذاران ایجاد کرده تا:
🔧 ابزارهای منبعباز و ابری جدید بسازند
🚀 موتورهای بهینهشده برای AI ارائه دهند
📊 راهحلهای هوشمند برای متادیتا خلق کنند
📌 جمعبندی : معماری Lakehouse نماد تحول در مدیریت دادههاست:
✔️ عملکرد بالا
✔️ تحلیل لحظهای
✔️ پشتیبانی از AI
✔️ مقیاسپذیری بالا
آینده از آن تیمهایی است که به جای مدیریت زیرساختهای پیچیده، بر خلق ارزش از دادهها تمرکز میکنند.
🏷 #Data3 #Lakehouse #AI #Metadata #StreamingData #DuckDB #Iceberg #DeltaLake #BVP #DataEngineering #ModernDataStack #RealTimeAnalytics #OpenSource #DataInfra #Startup #DataPlatform #VentureCapital #FutureOfData
👍2