Data Analysis / Big Data
2.83K subscribers
562 photos
4 videos
2 files
2.65K links
Лучшие посты по анализу данных и работе с Big Data на русском и английском языке

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels
Download Telegram
Повышение качества данных с использованием Zero Bug Policy

Олег Харатов, Technical Unit Lead в Авито, рассказывает, как навести порядок в огромном хранилище и не сойти с ума.

Читать: «Повышение качества данных с использованием Zero Bug Policy»

#ru

@big_data_analysis | Другие наши каналы
Возможности LLM и RAG на примере реализации бота для поддержки клиентов

Одной из ключевых точек контакта компании с клиентами является техподдержка, которая позволяет оперативно решать вопросы и отрабатывать обратную связь. Но клиенты, которые хотят консультацию и информацию по конкретному вопросу, часто создают нагрузку, которую небольшие отделы поддержки обработать не могут. В итоге бизнесу нужно либо расширять штат, либо автоматизировать часть процессов. В этом помогают чат-боты и нейросети.

Меня зовут Александр Волынский. Я технический менеджер продукта в подразделении Applied ML. В этой статье я хочу рассказать об LLM и RAG, вариантах их использования на примере нашего бота для поддержки клиентов, а также о сценариях применения полученной реализации.


Читать: https://habr.com/ru/companies/vk/articles/866906/

#ru

@big_data_analysis | Другие наши каналы
Рынок дата-инженеров и прогноз на 2025

В этой статье вы сможете узнать в каком состоянии находится рынок дата-инженеров в 2024-ом и что с ним будет в 2025-ом.


Читать: https://habr.com/ru/articles/864780/

#ru

@big_data_analysis | Другие наши каналы
Анализ фильмов с интернет-портала Кинопоиск

Данное исследование посвящено анализу данных о фильмах, собранных с крупнейшей российской платформы КиноПоиск. Основная цель работы — выявить факторы, влияющие на популярность фильмов, их рейтинги и финансовую успешность. В ходе исследования были проанализированы жанровые предпочтения аудитории, проведено сравнение оценок фильмов на Кинопоиске и IMDb, а также исследована взаимосвязь между бюджетами фильмов и их кассовыми сборами.

Разработка включала этапы сбора, обработки, анализа и визуализации данных. Для обработки данных применялись методы очистки от пропусков и ошибок, фильтрации по ключевым показателям и трансформации структур данных. Были реализованы функции для конвертации валют, извлечения данных о жанрах и персоналиях фильмов (актёрах и режиссёрах), а также вычисления статистических показателей полноты и однородности выборки.

Для эффективной работы системы был использован современный технологический стек. Обработка данных осуществлялась с помощью MongoDB, что обеспечило хранение и управление большими объёмами неструктурированной информации. RabbitMQ организовал асинхронный обмен сообщениями между компонентами системы, а серверная часть приложения разрабатывалась на базе Spring Boot, что ускорило процесс разработки и упростило развертывание приложения. Контейнеризация с использованием Docker обеспечила удобное развертывание и масштабирование системы. Основными языками программирования стали Java 17 и Python: Java использовалась для серверной части и микросервисов, а Python — для анализа данных и построения алгоритмов обработки информации.

Для анализа данных применялись библиотеки Pandas, Seaborn и SciPy, которые обеспечили эффективную обработку данных и визуализацию результатов. В рамках анализа строились графики, отображающие популярность жанров, исследовалась корреляция оценок на Кинопоиске и IMDb, а также визуализировалась связь между бюджетами и кассовыми сборами. Для представления результатов применялись такие инструменты, как matplotlib и seaborn, позволяя визуализировать ключевые закономерности в виде графиков и диаграмм.

Анализ выявил ключевые закономерности: популярность определённых жанров, зависимость коммерческого успеха фильма от его бюджета и значительное влияние известных актёров и режиссёров на успех фильма. Полученные результаты могут быть полезны для киностудий и продюсеров при планировании новых проектов, прогнозировании кассовых сборов и выборе жанров. Результаты также могут применяться для оптимизации маркетинговых стратегий при продвижении фильмов. В будущем планируется углубить исследование, проанализировать долгосрочные тренды в изменении популярности жанров и исследовать влияние пользовательских рецензий на успех фильмов.


Читать: https://habr.com/ru/articles/868238/

#ru

@big_data_analysis | Другие наши каналы
Машинное обучение на Spark

Существует множество подходов к машинному обучению. Со стороны может показаться, что генеративные модели на архитектуре под названием «трансформер» заняли передовые позиции и ближайшее обозримое будущее именно за ними. Но существуют и другие подходы к машинному обучению, которые тиражируются в медийном поле не так широко.

В этой статье вы познакомитесь с таким классом алгоритмов, как ансамблевые методы машинного обучения. А именно — градиентный бустинг на решающих деревьях. В основе они представляют из себя деревья решений, которые являются очень простой структурой, позволяющей получить ответ на основе входных данных. А еще мы разберемся, при чем тут Spark, и посмотрим на эти алгоритмы на практике.


Читать: https://habr.com/ru/companies/vk/articles/868114/

#ru

@big_data_analysis | Другие наши каналы
Переход на новую архитектуру проекта: как это влияет на надежность стриминга web-данных

Предположим, что перед вашей командой стоит задача по поиску надежного стриминга web и app данных, который бы соответствовал требованиям службы безопасности, ожиданиям отделов маркетинга и аналитики, а также был бы полезен для управляющей команды. Не менее важно удобство и прозрачность работы стриминга, а внесение изменений в ожидаемый результат, желательно, без привлечения дополнительного ресурса аналитиков и разработчиков.


Читать: https://habr.com/ru/articles/868358/

#ru

@big_data_analysis | Другие наши каналы
Сравниваем форматы сериализации на Go: скорость и удобство

Дмитрий Королёв, бэкенд-разработчик в Авито, разобрал на примерах, чем отличаются друг от друга форматы сериализации данных и как выбрать самый удобный.

Читать: «Сравниваем форматы сериализации на Go: скорость и удобство»

#ru

@big_data_analysis | Другие наши каналы
Какой тип разметки данных требуется для вашего проекта? Полный гид по аннотированию изображений

Ограничивающие рамки, полигоны, ключевые точки или 3D-кубоиды? Каждый из этих методов разметки подходит для совершенно разных задач машинного обучения.

Хотите узнать, как правильно выбрать инструмент для своего проекта? Мы сравним преимущества и недостатки каждого инструмента и покажем, как аннотирование помогает создать передовые технологии — от беспилотных авто до диагностики в медицине.


Читать: https://habr.com/ru/companies/data_light/articles/868464/

#ru

@big_data_analysis | Другие наши каналы
Как мультифакторные релейшены упростили нашу модель данных в Tableau

Сегодня BI-аналитика немыслима без ETL-процессов. Просто физических джоинов уже не хватает — чаще нужны логические модели данных. С ними можно создавать сложные структуры без запросов вручную. Как self-service инструмент, Tableau дал такую возможность в 2020 году, представив релейшены (relationships).


Читать: https://habr.com/ru/articles/868480/

#ru

@big_data_analysis | Другие наши каналы
Инновационные инструменты для безопасности данных

Oracle FDI представляет новую функцию — настраиваемый контекст безопасности. Эта уникальная возможность обеспечивает точный контроль доступа к финансовым данным, учитывая сегменты баланса и затрат. Узнайте, как улучшить управление данными в вашей организации.

Читать подробнее

#en

@big_data_analysis | Другие наши каналы
Матрица ошибок confusion_matrix() в scikit-learn

Одним из самых наиболее развёрнутых способов оценки качества классификации является применение матрицы ошибок. Матрица ошибок представляет собой квадратную таблицу, в которой отображается количество предсказанных и фактических классов для классификационной модели. В этой матрице строки представляют истинные классы (реальные метки), а столбцы представляют предсказанные классы (метки, которые предсказала модель). Размер матрицы соответствует количеству классов.
Обычно для бинарной классификации она выглядит так:


Читать: https://habr.com/ru/articles/868636/

#ru

@big_data_analysis | Другие наши каналы
Как LLM меняют архитектуру систем: от простых дата-пайплайнов к интеллектуальным автономным агентам

На каждой технической конференции в последнее время обязательно звучит слово «агенты». Они преподносятся по разному: и как следующая ступенька после RAG, и как серебряная пуля для решения всех проблем, и как абсолютная замена всех классических пайплайнов. А кто еще не использует агентов — безнадежно отстал от прогресса.

Но так ли это на самом деле? Данная статья вдохновлена видением компании Anthropic на применение LLM в процессах и на построение автономных агентов, поэтому давайте попробуем во всем разобраться.

Поговорим про Data Pipelines, LLM Workflows и LLM Agents, а так же сравним их между собой.


Читать: https://habr.com/ru/articles/868648/

#ru

@big_data_analysis | Другие наши каналы
Расцвет скоростей в сетях ЦОД: 400GbE уже мейнстрим или совсем мало?

Привет! Меня зовут Михаил Шпак, я занимаюсь комплексной архитектурой технологических решений в сетевой части ИТ-холдинга Fplus, который выпускает широкий спектр высокотехнологичных электронных устройств. В данной статье я хочу показать, как за последние 5 лет требования современного бизнеса и развитие ресурсоемких приложений (искусственного интеллекта, поисковых систем, мобильной связи стандарта 5G и т.д.) изменили требования к архитектуре, скорости и отзывчивости сетей, используемых в центрах обработки данных. Давайте разберемся, какие комплексные технологические решения заставляют нас ускоряться, а где можно использовать старые наработки и отточенные десятилетиями практики.


Читать: https://habr.com/ru/companies/fplus_tech/articles/868850/

#ru

@big_data_analysis | Другие наши каналы
Как не нужно визуализировать данные: антипаттерны в примерах

Как делать графики понятными и наглядными? Да ещё и избежать неверных трактовок? Когда использовать круговую диаграмму, а когда нужны линейные графики или столбчатая шкала? Для этого достаточно учесть антипаттерны, которые вредят и запутывают. Разберём на «хороших» и «плохих» примерах.

Привет, Хабр! Меня зовут Андрей Машковцев, я — BI-аналитик в «Т-банке», эксперт Skillbox, веду телеграмм–канал «Лайфхаки в аналитике» и увлекаюсь бегом. Для закрытого комьюнити Skillbox Code Experts рассказал об основных ошибках при визуализации данных. Основные мысли переложил в статью.


Читать: https://habr.com/ru/articles/868870/

#ru

@big_data_analysis | Другие наши каналы
Разбор и стандартизация имен, адресов и других типов пользовательских данных в миллионных базах

Во всевозможных заявлениях, анкетах и обращениях пользователи вводят свои ФИО, адреса и прочие персональные данные в настолько разном формате, что даже человеку бывает сложно понять, где ошибки, а где правильное написание. Например, «Саша Петрович» — это имя с отчеством или фамилия с именем? А, может, это сокращённая форма имени? И кто перед нами — мужчина или женщина?

Такие же сложности возникают и с другими данными: адресами, телефонами, названиями компаний. В этом посте расскажем о наших методах разбора и стандартизации клиентских данных, разговор про которые начали в статье про поиск дубликатов при объединении огромных клиентских баз.


Читать: https://habr.com/ru/companies/hflabs/articles/868062/

#ru

@big_data_analysis | Другие наши каналы
Нашли для вас интересную новость из сферы финтеха

А именно — узнали, что ОТП Банк запустил TG-канал для айтишников. Команда строит финтех в международном банке и теперь можно узнавать прямо у них, как они это делают.

На OTP Tech стоит подписаться, чтобы узнавать о внутрянке работы, фичах, которые ребята пилят, как решают разные инфраструктурные задачи и в целом чтобы покайфовать. Мы, например, зависли на этих енотиках. К слову, вакансиями ребята тоже делятся.

Прокачайте свою ленту крутым каналом: OTP Tech

Это #партнёрский пост
Как мы проверяли качество данных после завершения миграции с Teradata на Greenplum

Привет, Хабр! Мы завершаем серию статей о миграции аналитического хранилища данных с платформы Teradata на GreenPlum. В предыдущих статьях мы рассказали о нашем опыте и результатах автоматизированного переписывания SQL‑скриптов с помощью реализованных сервисов миграции кода и переноса архива данных. В этот раз мы расскажем вам о нашем опыте и результатах кросс‑платформенной проверки качества данных во время и после миграции, а также о трудностях и решениях, связанных с этим процессом.

Завершая нашу серию, мы подходим к ключевому аспекту миграции данных — проверке и обеспечению качества данных после переноса. Теперь, когда перед нами стоят два параллельно функционирующих хранилища, возникает вопрос о точности и согласованности данных между ними.


Читать: https://habr.com/ru/companies/sberbank/articles/869294/

#ru

@big_data_analysis | Другие наши каналы
Как выбрать вкусное вино на основе данных с помощью Luxms BI

В преддверии новогодних праздников предлагаю прочитать статью специально для виноманов! Меня зовут Ярослав Золотухин, я QA Lead Luxms.  И сегодня хочу поговорить о том, как с помощью данных и платформы бизнес-аналитики Luxms BI сделать выбор вина более осознанным и приятным.


Читать: https://habr.com/ru/companies/luxms_bi/articles/869382/

#ru

@big_data_analysis | Другие наши каналы
MLOps: как не потеряться в 10 тысячах фич, часть 1

Всем привет! Меня зовут Дмитрий Ермилов, и сегодня я хочу рассказать про то, как мы в билайне использовали один data catalog-инструмент для того, чтобы построить прозрачные связи между моделями машинного обучения и признаками, от которых эти модели зависят, то есть от фич. Из доклада вы узнаете, зачем и кому это бывает нужно, а также один из способов решения этой задачи.

Для начала немного о себе. Я более десяти лет в разработке и анализе данных, имею научный бэкграунд, принимал участие в различных проектах от построения высоконагруженных сервисов с использованием моделей машинного обучения и глубоких нейронных сетей до построения корпоративных хранилищ данных и ETL-процессов. В настоящий момент работают в билайн, в дирекции билайн бизнес (Big Data&AI).

Департамент DS состоит из двадцати специалистов. Билайн сегодня в первую очередь — технологичная компания, мы любим говорить, что мы технологичны снаружи и технологичны внутри. У нас трудится более 3500 IT-специалистов, более 200 продуктовых команд, которые разбиты на различные сегменты (внутренние продукты, продукты B2C, B2G и B2B). Дирекция Big Data&AI сфокусирована на B2B-сегменте, у нас 13 продуктовых команд, 200 IT-специалистов, это ML, DS, дата аналитики, фронт, бек, DevOps и другие функции.

Спектр продуктов широкий - от платформы видеоаналитики и системы транскрибации и анализа речи до классических продуктов в области банковского скоринга. Мы любим машинное обучение, и это взаимно.


Читать: https://habr.com/ru/companies/beeline_tech/articles/868612/

#ru

@big_data_analysis | Другие наши каналы
👍1
MLOps: как не потеряться в 10 тысячах фич, часть 2

Первая часть — здесь.

Data lineage

Этот подход обеспечивает прослеживание связей в данных и клиентов, которые используют данные, от источника, включая промежуточные стадии, до момента потребления этих данных. Данные может потреблять сервисы, какие-то BI-системы, на которых построены дашборды, эксплуатировать данные могут люди, дата аналитики, которым это необходимо в рабочих процессах. Data lineage позволяет прозрачно взглянуть на эти вещи и отследить момент получения предагрегатов до момента эксплуатации этих данных клиентами.

Нам важен разрез, когда клиентами или целевыми заказчиками данных являются ML-модели.


Читать: https://habr.com/ru/companies/beeline_tech/articles/868730/

#ru

@big_data_analysis | Другие наши каналы