Фреймворк для дизайна A/B-теста
Сегодня мы рассмотрим простой базовый фреймворк для дизайна сплит-теста, который можно удобно использовать продуктовым аналитикам в своей работе. Разберем использование этого фреймворка, его теоретическую и математическую основу, и также поговорим о продуктовых аспектах заведения A/B-тестов — когда продакту и аналитику заводить A/B-тест не нужно. Вам понадобятся: представления о продуктовых метриках, знания python, первичные представления о математической статистике и чуточку воображения.
Читать: https://habr.com/ru/articles/780932/
Сегодня мы рассмотрим простой базовый фреймворк для дизайна сплит-теста, который можно удобно использовать продуктовым аналитикам в своей работе. Разберем использование этого фреймворка, его теоретическую и математическую основу, и также поговорим о продуктовых аспектах заведения A/B-тестов — когда продакту и аналитику заводить A/B-тест не нужно. Вам понадобятся: представления о продуктовых метриках, знания python, первичные представления о математической статистике и чуточку воображения.
Читать: https://habr.com/ru/articles/780932/
Расчетная архитектура платформы для A/B-тестов Mail.Ru
Привет Хабр! Меня зовут Андрей Каймаков, я работаю в продуктовой аналитике Mail.ru в VK. Сейчас практически каждая IT-компания (да и не только IT) знает про A/B-тесты и понимает важность проверки новых фичей с помощью этого метода. Когда фичей становится много, то A/B-тесты начинают занимать значительное время в работе команд. Чтобы автоматизировать эти процессы создаются платформы для проведения A/B-тестов. Мы разрабатываем свою систему с 2017 года, а недавно сильно ее обновили. Хочу вместе со своим коллегой разработчиком Андреем Чубаркиным поделиться опытом и инсайтами, которые мы обнаружили в ходе этого проекта.
Читать: https://habr.com/ru/companies/vk/articles/781300/
Привет Хабр! Меня зовут Андрей Каймаков, я работаю в продуктовой аналитике Mail.ru в VK. Сейчас практически каждая IT-компания (да и не только IT) знает про A/B-тесты и понимает важность проверки новых фичей с помощью этого метода. Когда фичей становится много, то A/B-тесты начинают занимать значительное время в работе команд. Чтобы автоматизировать эти процессы создаются платформы для проведения A/B-тестов. Мы разрабатываем свою систему с 2017 года, а недавно сильно ее обновили. Хочу вместе со своим коллегой разработчиком Андреем Чубаркиным поделиться опытом и инсайтами, которые мы обнаружили в ходе этого проекта.
Читать: https://habr.com/ru/companies/vk/articles/781300/
fsspec и вообще зачем оно нам нужно
Привет! Сегодня я расскажу вам про fsspec, его киллер фичи и почему он является незаменимым инструментом любого python разработчика.
Читать: https://habr.com/ru/articles/781804/
Привет! Сегодня я расскажу вам про fsspec, его киллер фичи и почему он является незаменимым инструментом любого python разработчика.
Читать: https://habr.com/ru/articles/781804/
Разметка данных в 2023 году: текущие тренды и требования будущего
Разметка данных и/или аннотирование данных уже давно являются критически важным компонентом многих проектов машинного обучения и ИИ. В последние годы спрос на точную и надёжную разметку данных существенно вырос, ведь этот процесс становится всё более насущным для успеха множества проектов. Что же такое разметка данных? Как она повлияет на бизнесы? На какие тренды стоит обратить внимание, потому что они сформируют образ будущего разметки данных? В своём посте мы исследуем эти вопросы, чтобы лучше понимать, в каком направлении будет двигаться технология в ближайшие несколько лет.
Читать: https://habr.com/ru/articles/759154/
Разметка данных и/или аннотирование данных уже давно являются критически важным компонентом многих проектов машинного обучения и ИИ. В последние годы спрос на точную и надёжную разметку данных существенно вырос, ведь этот процесс становится всё более насущным для успеха множества проектов. Что же такое разметка данных? Как она повлияет на бизнесы? На какие тренды стоит обратить внимание, потому что они сформируют образ будущего разметки данных? В своём посте мы исследуем эти вопросы, чтобы лучше понимать, в каком направлении будет двигаться технология в ближайшие несколько лет.
Читать: https://habr.com/ru/articles/759154/
❤2
Augment Data in Oracle Fusion Analytics using the Oracle Analytics Publisher Connector
With the 23.R3 release of Fusion Analytics, the Oracle Analytics Publisher Connector is now a self-service preview feature.
Read: https://blogs.oracle.com/analytics/post/using-oracle-analytics-bi-publisher-connector-in-fusion-analytics
With the 23.R3 release of Fusion Analytics, the Oracle Analytics Publisher Connector is now a self-service preview feature.
Read: https://blogs.oracle.com/analytics/post/using-oracle-analytics-bi-publisher-connector-in-fusion-analytics
Oracle
Augment Data in Oracle Fusion Analytics using the Oracle Analytics Publisher Connector
With 23.R3, Fusion Analytics supports BIP as a data source as a self-service preview feature.
👍1
Forwarded from Нейроканал
Все перечисленные библиотеки имеют открытый исходный код и предназначены в основном для питонистов.
Анализ, очистка и подготовка данных:
Pandas — быстрая и гибкая очистка и подготовка данных.
Numpy — предварительная обработка данных, применяется для математических вычислений.
Statsmodels — статистический анализ временных рядов, выживаемости и многого другого.
YData Profiling — упрощает этап EDA, тщательно анализируя ваши данные в одной строке кода.
Машинное и глубокое обучение:
Scikit-learn — ключевая библиотека машинного обучения, содержит реализацию популярных алгоритмов (регрессия, кластеризация).
Keras — создание, настройка моделей, работает поверх таких фреймворков, как TensorFlow.
TensorFlow — создание, моделирование и тренировка нейросетей.
XGBoost — предоставляет эффективные алгоритмы для задач регрессии, классификации и ранжирования.
CatBoost — градиентный бустинг.
#библиотеки #ml #deeplearning #python
Анализ, очистка и подготовка данных:
Pandas — быстрая и гибкая очистка и подготовка данных.
Numpy — предварительная обработка данных, применяется для математических вычислений.
Statsmodels — статистический анализ временных рядов, выживаемости и многого другого.
YData Profiling — упрощает этап EDA, тщательно анализируя ваши данные в одной строке кода.
Машинное и глубокое обучение:
Scikit-learn — ключевая библиотека машинного обучения, содержит реализацию популярных алгоритмов (регрессия, кластеризация).
Keras — создание, настройка моделей, работает поверх таких фреймворков, как TensorFlow.
TensorFlow — создание, моделирование и тренировка нейросетей.
XGBoost — предоставляет эффективные алгоритмы для задач регрессии, классификации и ранжирования.
CatBoost — градиентный бустинг.
#библиотеки #ml #deeplearning #python
🙏2😍2👍1
Дайджест новостей из мира будущего, машинного обучения, роботов и искусственного интеллекта за конец зимы
Отфильтровав для Вас большое количество источников и подписок, сегодня собрал все наиболее значимые новости из мира будущего, машинного обучения, роботов и искусственного интеллекта.
Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие новости.
Итак, а теперь сам дайджест:
Читать дайджест
Читать: https://habr.com/ru/articles/783354/
Отфильтровав для Вас большое количество источников и подписок, сегодня собрал все наиболее значимые новости из мира будущего, машинного обучения, роботов и искусственного интеллекта.
Меня зовут Рушан, и я автор Telegram‑канала Нейрон. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие новости.
Итак, а теперь сам дайджест:
Читать дайджест
Читать: https://habr.com/ru/articles/783354/
❤1👍1
Успешный опыт участия в Data Science хакатонах
В статье я хочу поделиться успешным командным и личным опытом участия в хакатонах и ML соревнованиях. На примере 13-ти соревнований, по итогу которых мы победили или оказывались на призовых местах, я рассажу о практических советах для будущих участников.
На личном опыте я убедился, что не всегда для победы требуются сложные алгоритмы, мощное железо или большой опыт в индустрии. Иногда 5-6 строчек кода и немного смекалки достаточно, чтобы получить топ-1 решение. Я расскажу вам про не очевидные, на первый взгляд, но довольно простые решения, а также раскрою некоторые интересные моменты хакатонской кухни, которые, надеюсь, вдохновят вас на участие.
Статья будет полезна будущим участникам соревнований и data science специалистам, которые смогут применить описанные решения и практические советы в реальных задачах.
Читать: https://habr.com/ru/articles/766514/
В статье я хочу поделиться успешным командным и личным опытом участия в хакатонах и ML соревнованиях. На примере 13-ти соревнований, по итогу которых мы победили или оказывались на призовых местах, я рассажу о практических советах для будущих участников.
На личном опыте я убедился, что не всегда для победы требуются сложные алгоритмы, мощное железо или большой опыт в индустрии. Иногда 5-6 строчек кода и немного смекалки достаточно, чтобы получить топ-1 решение. Я расскажу вам про не очевидные, на первый взгляд, но довольно простые решения, а также раскрою некоторые интересные моменты хакатонской кухни, которые, надеюсь, вдохновят вас на участие.
Статья будет полезна будущим участникам соревнований и data science специалистам, которые смогут применить описанные решения и практические советы в реальных задачах.
Читать: https://habr.com/ru/articles/766514/
Patient engagement analytics: It’s measurable!
We show the way into transforming abstract patient engagement concept into a measurable value unlocking multiple opportunities for healthcare providers.
Read: https://www.scnsoft.com/healthcare/patient-engagement-analytics-its-measurable
We show the way into transforming abstract patient engagement concept into a measurable value unlocking multiple opportunities for healthcare providers.
Read: https://www.scnsoft.com/healthcare/patient-engagement-analytics-its-measurable
Нет новогоднего настроения? Сейчас исправим:
1. Налейте чаю
2. Сядьте поудобнее
3. Откройте «Конфетный рандом»
4. Возьмите конфетку
5. Ладно, возьмите ещё одну конфетку
6. Поделитесь ссылкой с друзьями
Всем джингл беллс!
1. Налейте чаю
2. Сядьте поудобнее
3. Откройте «Конфетный рандом»
4. Возьмите конфетку
5. Ладно, возьмите ещё одну конфетку
6. Поделитесь ссылкой с друзьями
Всем джингл беллс!
Особенности машинного обучения в нефтегазовой отрасли
Привет, меня зовут Олег Свидченко, я — Chief Data Scientist. Работаю в ассоциации «Цифровые технологии в промышленности». Если вы недавно перешли из крупной технологической компании в нефтегазовую или только планируете этот переход, либо слышали про машинное обучение только в теории, но у вас нет практики его применения в конкретных, особенно промышленных проектах, эта статья для вас.
Когда я искал новое место работы, сперва рассматривал крупные IT-компании, но решил, что мне неинтересно допиливать 0,1% к точности поиска. А в промышленности — непаханное поле, можно внедрять интересные технологии крупными мазками и решать задачи, которые еще не исследовались. Хотя меня пугали страшилками, что будет строгий дресс-код, жесткий график, неудобный офис и скучные проекты...
Читать: https://habr.com/ru/companies/oleg-bunin/articles/783656/
Привет, меня зовут Олег Свидченко, я — Chief Data Scientist. Работаю в ассоциации «Цифровые технологии в промышленности». Если вы недавно перешли из крупной технологической компании в нефтегазовую или только планируете этот переход, либо слышали про машинное обучение только в теории, но у вас нет практики его применения в конкретных, особенно промышленных проектах, эта статья для вас.
Когда я искал новое место работы, сперва рассматривал крупные IT-компании, но решил, что мне неинтересно допиливать 0,1% к точности поиска. А в промышленности — непаханное поле, можно внедрять интересные технологии крупными мазками и решать задачи, которые еще не исследовались. Хотя меня пугали страшилками, что будет строгий дресс-код, жесткий график, неудобный офис и скучные проекты...
Читать: https://habr.com/ru/companies/oleg-bunin/articles/783656/