Создайте адаптивные дашборды в Oracle Analytics, которые автоматически подстраиваются под любой экран. В статье рассказывается о лучших подходах к дизайну, оптимизации визуализаций и настройке точек перелома для удобства на десктопе, планшете и мобильных устройствах.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Responsive Dashboards in Oracle Analytics: Boost User Adoption
Master responsive design principles and Oracle's breakpoint tools to deliver critical insights on any screen size.
Вдохновляющая история Майлса Гиленана: от тенниса до руководителя направления данных и искусственного интеллекта в Apps Associates. Узнайте, как разные этапы карьеры привели его к вершинам в сфере аналитики и ИИ.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
A man with a passion for trying new things
From tennis, to accountancy, to data and analytics and AI – one man’s journey. A profile of Myles Gilsenan, Vice President of Data, Analytics and AI at Apps Associates.
Почему в космосе (пока) нет дата-центров. Часть третья: какие вычисления уже работают
Привет, Хабр! На связи снова Александр Токарев. И это третья часть из серии статей о том, почему в космосе нет дата-центров.
Во второй части мы разобрались, что главные барьеры для космических ЦОДов — вовсе не процессоры, а энергия, охлаждение, радиация и отсутствие устойчивых сетей. Но пока проекты с «настоящими» дата-центрами остаются в рендерах, в космосе уже крутятся рабочие вычисления. Давайте посмотрим, что из этого реально работает сегодня и какие горизонты впереди.
Читать: https://habr.com/ru/companies/oleg-bunin/articles/947134/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр! На связи снова Александр Токарев. И это третья часть из серии статей о том, почему в космосе нет дата-центров.
Во второй части мы разобрались, что главные барьеры для космических ЦОДов — вовсе не процессоры, а энергия, охлаждение, радиация и отсутствие устойчивых сетей. Но пока проекты с «настоящими» дата-центрами остаются в рендерах, в космосе уже крутятся рабочие вычисления. Давайте посмотрим, что из этого реально работает сегодня и какие горизонты впереди.
Читать: https://habr.com/ru/companies/oleg-bunin/articles/947134/
#ru
@big_data_analysis | Другие наши каналы
Данные не кончатся: как LLM навсегда изменили сбор и разметку мультимодальных данных и привели нас к SynthOps
Привет! Эта статья посвящена синтетическим данным и тому, как сбор данных и их разметка изменились навсегда. Поговорим про мультимодальную синтетику (аудио и изображения), генераторы, валидаторы, примеры классных генераций, датасеты, роль LLMок в этих процессах и трансформацию привычных пайпланов в концепцию SynthOps, которая требует других подходов по работе с данными.
Я достаточно долгое время разрабатывал софт для разметки всего и вся любой сложности, рассказывал про то как LLMки пришли на замену (или помощь) людям в текстовых и мультимодальных данных, а потом позанимался генерацией разного роды синты.
Обо всем это и хочется рассказать.
Читать: https://habr.com/ru/articles/950874/
#ru
@big_data_analysis | Другие наши каналы
Привет! Эта статья посвящена синтетическим данным и тому, как сбор данных и их разметка изменились навсегда. Поговорим про мультимодальную синтетику (аудио и изображения), генераторы, валидаторы, примеры классных генераций, датасеты, роль LLMок в этих процессах и трансформацию привычных пайпланов в концепцию SynthOps, которая требует других подходов по работе с данными.
Я достаточно долгое время разрабатывал софт для разметки всего и вся любой сложности, рассказывал про то как LLMки пришли на замену (или помощь) людям в текстовых и мультимодальных данных, а потом позанимался генерацией разного роды синты.
Обо всем это и хочется рассказать.
Читать: https://habr.com/ru/articles/950874/
#ru
@big_data_analysis | Другие наши каналы
Как мы научили нейросеть читать технические схемы и сразу считать их стоимость
Когда думаешь о «цифровой трансформации» в промышленности, в голове обычно всплывают роботы, датчики, большие экраны и дроны, которые сами разносят детали по цеху. В реальности всё часто упирается в куда более прозаичные вещи.
Например — технические схемы. Представьте: целые шкафы с папками, где вперемешку свежие CAD-чертежи и сканы пожелтевших листов А3 с подписями от руки: «Смотри сюда», «замени резистор». Чтобы собрать спецификацию и посчитать стоимость, инженеру приходилось садиться с карандашом и Excel — и часами переписывать резисторы, транзисторы, конденсаторы, их номиналы и количество. Ошибся в одной букве или не заметил мелкий элемент — и вся цепочка снабжения поехала.
В какой-то момент мы, как разработчики, задали себе вопрос: «А почему в 2025 году до сих пор человек должен глазами считать резисторы на сканах, если есть компьютерное зрение и OCR?» Так и стартовал проект: сделать систему, которая за полминуты превратит «кривой скан схемы из прошлого века» в таблицу компонентов с готовой сметой.
Читать: https://habr.com/ru/articles/951016/
#ru
@big_data_analysis | Другие наши каналы
Когда думаешь о «цифровой трансформации» в промышленности, в голове обычно всплывают роботы, датчики, большие экраны и дроны, которые сами разносят детали по цеху. В реальности всё часто упирается в куда более прозаичные вещи.
Например — технические схемы. Представьте: целые шкафы с папками, где вперемешку свежие CAD-чертежи и сканы пожелтевших листов А3 с подписями от руки: «Смотри сюда», «замени резистор». Чтобы собрать спецификацию и посчитать стоимость, инженеру приходилось садиться с карандашом и Excel — и часами переписывать резисторы, транзисторы, конденсаторы, их номиналы и количество. Ошибся в одной букве или не заметил мелкий элемент — и вся цепочка снабжения поехала.
В какой-то момент мы, как разработчики, задали себе вопрос: «А почему в 2025 году до сих пор человек должен глазами считать резисторы на сканах, если есть компьютерное зрение и OCR?» Так и стартовал проект: сделать систему, которая за полминуты превратит «кривой скан схемы из прошлого века» в таблицу компонентов с готовой сметой.
Читать: https://habr.com/ru/articles/951016/
#ru
@big_data_analysis | Другие наши каналы
Гайд по созданию качественных дата-продуктов от SYNQ: топ-4 советов
Принцип «тестируй все» не повышает, а разрушает качество данных. Сотни бесполезных алертов создают шум, в котором тонут действительно важные сигналы, а команда перестает на них реагировать. В Google и Monzo от этого уже отказались. Рассказываем, как перейти от тотального тестирования к точечным проверкам узлов с максимальным радиусом влияния и почему один правильный тест на источник важнее сотни проверок в витринах.
Читать: https://habr.com/ru/companies/postgrespro/articles/951048/
#ru
@big_data_analysis | Другие наши каналы
Принцип «тестируй все» не повышает, а разрушает качество данных. Сотни бесполезных алертов создают шум, в котором тонут действительно важные сигналы, а команда перестает на них реагировать. В Google и Monzo от этого уже отказались. Рассказываем, как перейти от тотального тестирования к точечным проверкам узлов с максимальным радиусом влияния и почему один правильный тест на источник важнее сотни проверок в витринах.
Читать: https://habr.com/ru/companies/postgrespro/articles/951048/
#ru
@big_data_analysis | Другие наши каналы
Собираем систему мониторинга ответов LLM на коленке
Наверняка вы сталкивались с ситуациями, когда модель начинает вести себя в проде не так, как задумывалось: например, ведётся на провокации пользователя или даёт некорректные ответы. Зачастую такие ошибки безобидны, но случаются и не очень приятные ситуации. А если речь идёт о чат-боте, который отвечает на вопросы в юридической или медицинской сфере — практически любая ошибка может быть критичной.
Итак, мы плавно подошли к тому, что нужно каким-то образом валидировать ответы LLM. Давайте разберёмся, как это делать.
Читать: https://habr.com/ru/companies/tochka/articles/949430/
#ru
@big_data_analysis | Другие наши каналы
Наверняка вы сталкивались с ситуациями, когда модель начинает вести себя в проде не так, как задумывалось: например, ведётся на провокации пользователя или даёт некорректные ответы. Зачастую такие ошибки безобидны, но случаются и не очень приятные ситуации. А если речь идёт о чат-боте, который отвечает на вопросы в юридической или медицинской сфере — практически любая ошибка может быть критичной.
Итак, мы плавно подошли к тому, что нужно каким-то образом валидировать ответы LLM. Давайте разберёмся, как это делать.
Читать: https://habr.com/ru/companies/tochka/articles/949430/
#ru
@big_data_analysis | Другие наши каналы
Трансформеры: технология, лежащая в основе больших языковых моделей | Глубокое обучение
Автор оригинала: Грант Сандерсон, адаптация текста Джастин Сан
Данная статья представляет собой подробное введение в архитектуру трансформеров — ключевой технологии, лежащей в основе современных больших языковых моделей, таких как ChatGPT.
Статья подробно описывает архитектуру трансформера, включая блоки внимания (Attention Blocks), где векторы взаимодействуют друг с другом для обновления значений на основе контекста, и многослойные распознаватели (Перцептроны) (Feed-Forward Layers), где векторы обрабатываются параллельно. Объясняется, почему глубокие нейронные сети называются «глубокими» — из-за множества чередующихся слоёв этих операций.
Материал включает практические примеры на основе GPT-3 с её 175 миллиардами параметров, распределённых по почти 28,000 матрицам. Авторы тщательно отслеживают количество параметров на каждом этапе, помогая читателю понять масштаб современных языковых моделей.
Ключевая идея статьи заключается в том, что модель, обученная предсказывать следующее слово, способна генерировать связный текст путём повторяющегося процесса предсказания и выборки. Детально рассматривается процесс токенизации входных данных, когда текст разбивается на небольшие фрагменты — токены, которые затем преобразуются в векторы с помощью матрицы вложений.
Особое внимание уделяется концепции векторных представлений слов в многомерном пространстве, где направления имеют семантическое значение. Авторы демонстрируют, как модель обучается располагать слова со схожими значениями близко друг к другу, а также как векторная арифметика может отражать смысловые отношения между словами.
Завершается статья описанием процесса "вложений" и функции "softmax", которая преобразует выходные данные модели в распределение вероятностей для предсказания следующего токена. Особое внимание уделяется понятию «температуры», которое контролирует степень случайности при генерации текста.
Читать: https://habr.com/ru/articles/951534/
#ru
@big_data_analysis | Другие наши каналы
Автор оригинала: Грант Сандерсон, адаптация текста Джастин Сан
Данная статья представляет собой подробное введение в архитектуру трансформеров — ключевой технологии, лежащей в основе современных больших языковых моделей, таких как ChatGPT.
Статья подробно описывает архитектуру трансформера, включая блоки внимания (Attention Blocks), где векторы взаимодействуют друг с другом для обновления значений на основе контекста, и многослойные распознаватели (Перцептроны) (Feed-Forward Layers), где векторы обрабатываются параллельно. Объясняется, почему глубокие нейронные сети называются «глубокими» — из-за множества чередующихся слоёв этих операций.
Материал включает практические примеры на основе GPT-3 с её 175 миллиардами параметров, распределённых по почти 28,000 матрицам. Авторы тщательно отслеживают количество параметров на каждом этапе, помогая читателю понять масштаб современных языковых моделей.
Ключевая идея статьи заключается в том, что модель, обученная предсказывать следующее слово, способна генерировать связный текст путём повторяющегося процесса предсказания и выборки. Детально рассматривается процесс токенизации входных данных, когда текст разбивается на небольшие фрагменты — токены, которые затем преобразуются в векторы с помощью матрицы вложений.
Особое внимание уделяется концепции векторных представлений слов в многомерном пространстве, где направления имеют семантическое значение. Авторы демонстрируют, как модель обучается располагать слова со схожими значениями близко друг к другу, а также как векторная арифметика может отражать смысловые отношения между словами.
Завершается статья описанием процесса "вложений" и функции "softmax", которая преобразует выходные данные модели в распределение вероятностей для предсказания следующего токена. Особое внимание уделяется понятию «температуры», которое контролирует степень случайности при генерации текста.
Читать: https://habr.com/ru/articles/951534/
#ru
@big_data_analysis | Другие наши каналы
Разбираемся в профессиях: Data Analyst, Data Engineer, Analytics Engineer и BI Engineer
Кто вы в мире данных — аналитик, BI-разработчик или Data Engineer? 🔍 Разбираем реальные роли и показываем, чем они отличаются на практике.
Читать: https://habr.com/ru/articles/951454/
#ru
@big_data_analysis | Другие наши каналы
Кто вы в мире данных — аналитик, BI-разработчик или Data Engineer? 🔍 Разбираем реальные роли и показываем, чем они отличаются на практике.
Читать: https://habr.com/ru/articles/951454/
#ru
@big_data_analysis | Другие наши каналы
Домен-специфичные LLM: как сделать ИИ реально полезным для вашего бизнеса
Универсальные модели вроде GPT хорошо справляются с широким классом задач, но буксуют в узких доменах. Они не знают специфику нишевых индустрий, их жаргон и не имеют доступа к проприетарным знаниям, которые делают ваш бизнес уникальным. Когда нужна система ИИ, которая действительно «понимает» именно вашу предметную область, стоит выбирать домен-специфичные LLM (DSLM).
Читать: https://habr.com/ru/articles/951482/
#ru
@big_data_analysis | Другие наши каналы
Универсальные модели вроде GPT хорошо справляются с широким классом задач, но буксуют в узких доменах. Они не знают специфику нишевых индустрий, их жаргон и не имеют доступа к проприетарным знаниям, которые делают ваш бизнес уникальным. Когда нужна система ИИ, которая действительно «понимает» именно вашу предметную область, стоит выбирать домен-специфичные LLM (DSLM).
Читать: https://habr.com/ru/articles/951482/
#ru
@big_data_analysis | Другие наши каналы