Неожиданный результат: ИИ замедляет опытных разработчиков
Мы провели рандомизированное контролируемое исследование (RCT), чтобы оценить, как инструменты искусственного интеллекта начала 2025 года влияют на продуктивность опытных open-source разработчиков, работающих в своих собственных репозиториях. Неожиданно оказалось, что при использовании ИИ-инструментов разработчики выполняют задачи на 19% дольше, чем без них — то есть ИИ замедляет их работу.
Мы рассматриваем этот результат как срез текущего уровня возможностей ИИ в одном из прикладных сценариев. Поскольку системы продолжают стремительно развиваться, мы планируем использовать аналогичную методологию в будущем, чтобы отслеживать, насколько ИИ способен ускорять работу в сфере автоматизации R&D[1].
Подробности — в полной версии статьи.
Читать: https://habr.com/ru/articles/936938/
#ru
@big_data_analysis | Другие наши каналы
Мы провели рандомизированное контролируемое исследование (RCT), чтобы оценить, как инструменты искусственного интеллекта начала 2025 года влияют на продуктивность опытных open-source разработчиков, работающих в своих собственных репозиториях. Неожиданно оказалось, что при использовании ИИ-инструментов разработчики выполняют задачи на 19% дольше, чем без них — то есть ИИ замедляет их работу.
Мы рассматриваем этот результат как срез текущего уровня возможностей ИИ в одном из прикладных сценариев. Поскольку системы продолжают стремительно развиваться, мы планируем использовать аналогичную методологию в будущем, чтобы отслеживать, насколько ИИ способен ускорять работу в сфере автоматизации R&D[1].
Подробности — в полной версии статьи.
Читать: https://habr.com/ru/articles/936938/
#ru
@big_data_analysis | Другие наши каналы
Несогласованность эффектов или «Где деньги, Лебовски?»
В статье рассматриваются проблемы, возникающие при оценке эффектов A/B-тестов и Causal Inference в ритейле, когда необходимо анализировать изменения выручки по различным категориям товаров и общей (тотал-) категории. Мы подробно рассмотрим, почему простое суммирование оценок эффектов по категориям не всегда дает корректную оценку для тотал-категории, и предложим эффективный способ решения этой проблемы.
Читать: https://habr.com/ru/companies/X5Tech/articles/940488/
#ru
@big_data_analysis | Другие наши каналы
В статье рассматриваются проблемы, возникающие при оценке эффектов A/B-тестов и Causal Inference в ритейле, когда необходимо анализировать изменения выручки по различным категориям товаров и общей (тотал-) категории. Мы подробно рассмотрим, почему простое суммирование оценок эффектов по категориям не всегда дает корректную оценку для тотал-категории, и предложим эффективный способ решения этой проблемы.
Читать: https://habr.com/ru/companies/X5Tech/articles/940488/
#ru
@big_data_analysis | Другие наши каналы
LLM-агенты против ручного ресерча: кейс Bioptic в биофарме
При разработке новых лекарств важно вовремя оценить конкурентную среду – какие препараты уже существуют или находятся в разработке для той же болезни. Такой анализ конкурентов обычно входит в due diligence проекта: инвесторы и фармкомпании вручную собирают данные из разных источников о всех потенциальных конкурентах целевого препарата.
Команда стартапа Bioptic (сооснователь — Андрей Дороничев) предложила автоматизировать эту рутинную работу с помощью агентной AI‑системы на базе больших языковых моделей (LLM).
Всем привет. Меня зовут Кирилл Пшинник, я научный сотрудник Университета Иннополис и CEO онлайн-университета zerocoder.ru. Сегодня узнал о еще одном важном шаге в деле ускорения анализа и сбора информации с помощью ИИ. На этом примере — в медицине.
Читать
Читать: https://habr.com/ru/articles/940806/
#ru
@big_data_analysis | Другие наши каналы
При разработке новых лекарств важно вовремя оценить конкурентную среду – какие препараты уже существуют или находятся в разработке для той же болезни. Такой анализ конкурентов обычно входит в due diligence проекта: инвесторы и фармкомпании вручную собирают данные из разных источников о всех потенциальных конкурентах целевого препарата.
Команда стартапа Bioptic (сооснователь — Андрей Дороничев) предложила автоматизировать эту рутинную работу с помощью агентной AI‑системы на базе больших языковых моделей (LLM).
Всем привет. Меня зовут Кирилл Пшинник, я научный сотрудник Университета Иннополис и CEO онлайн-университета zerocoder.ru. Сегодня узнал о еще одном важном шаге в деле ускорения анализа и сбора информации с помощью ИИ. На этом примере — в медицине.
Читать
Читать: https://habr.com/ru/articles/940806/
#ru
@big_data_analysis | Другие наши каналы
❤1
Forwarded from Типичный программист
Tproger объединились с Paradox и запустили совместный проект для комьюнити разработчиков
Мы сделали два дизайна — теперь ваш ход. Вы за типичный или за токсичный вайб? Голосуйте за один из вариантов до 30 августа на сайте.
В конце месяца объявим победителя — дизайн, который сообщество реально протащило в прод.
И да, всё самое интересное будет в канале. Среди голосующих разыграем призы — так что не только банке достанется апгрейд.
Мы сделали два дизайна — теперь ваш ход. Вы за типичный или за токсичный вайб? Голосуйте за один из вариантов до 30 августа на сайте.
В конце месяца объявим победителя — дизайн, который сообщество реально протащило в прод.
И да, всё самое интересное будет в канале. Среди голосующих разыграем призы — так что не только банке достанется апгрейд.
Проблема маленьких файлов. Оценка замедления S3 и проблем HDFS и Greenplum при работе ними
Не так давно в блоге компании Arenadata был опубликован материал тестирования поведения различных распределенных файловых систем при работе с маленькими файлами (~2 Мб). Краткий вывод: по результатам проверки оказалось, что лучше всего с задачей маленьких файлов справляется старый-добрый HDFS, деградируя в 1.5 раза, S3 на базе minIO не тянет, замедляясь в 8 раз, S3 API над Ozone деградирует в 4 раза, а наиболее предпочтительной системой в при работе с мелкими файлами, по утверждению коллег, является Greenplum, в том числе для компаний «экзабайтного клуба». Коллеги также выполнили огромную работу по поиску «Теоретических подтверждений неожиданных показателей».
Результаты тестирования в части S3 minIO показались нашей команде неубедительными, и мы предположили, что они могут быть связаны с:
-недостаточным практическим опытом эксплуатации SQL compute over S3 и S3 в целом;
-отсутствием опыта работы с кластерами minIO. В частности в высоконагруженном продуктивном окружении на 200+ Тб сжатых колоночных данных Iceberg/parquet, особенно в сценариях, где проблема маленьких файлов быстро становится актуальной.
-особенностями сборок дистрибутивов;
Мы благодарны коллегам за идею и вдохновение провести аналогичное тестирование. Давайте разбираться.
Читать: https://habr.com/ru/companies/datasapience/articles/941046/
#ru
@big_data_analysis | Другие наши каналы
Не так давно в блоге компании Arenadata был опубликован материал тестирования поведения различных распределенных файловых систем при работе с маленькими файлами (~2 Мб). Краткий вывод: по результатам проверки оказалось, что лучше всего с задачей маленьких файлов справляется старый-добрый HDFS, деградируя в 1.5 раза, S3 на базе minIO не тянет, замедляясь в 8 раз, S3 API над Ozone деградирует в 4 раза, а наиболее предпочтительной системой в при работе с мелкими файлами, по утверждению коллег, является Greenplum, в том числе для компаний «экзабайтного клуба». Коллеги также выполнили огромную работу по поиску «Теоретических подтверждений неожиданных показателей».
Результаты тестирования в части S3 minIO показались нашей команде неубедительными, и мы предположили, что они могут быть связаны с:
-недостаточным практическим опытом эксплуатации SQL compute over S3 и S3 в целом;
-отсутствием опыта работы с кластерами minIO. В частности в высоконагруженном продуктивном окружении на 200+ Тб сжатых колоночных данных Iceberg/parquet, особенно в сценариях, где проблема маленьких файлов быстро становится актуальной.
-особенностями сборок дистрибутивов;
Мы благодарны коллегам за идею и вдохновение провести аналогичное тестирование. Давайте разбираться.
Читать: https://habr.com/ru/companies/datasapience/articles/941046/
#ru
@big_data_analysis | Другие наши каналы
👍1