Сравниваем быстродействие новой функциональности ClickHouse по поиску ближайших векторов с другими решениями
Всем привет! Меня зовут Диана Бутько, я студентка 3 курса, изучаю информационные системы и программирование. В InfoWatch я пришла на практику, и одной из моих задач стал сравнительный анализ различных методов поиска похожих векторов. Это один из ключевых аспектов машинного обучения и анализа данных, используемых в рекомендательных системах, кластеризации, семантическом поиске и других областях. Но чем больше объем данных, тем важнее становится выбор инструментов: полный перебор векторов требует больших вычислительных ресурсов, а в других алгоритмах порой необходимо балансировать между точностью и скоростью поиска.
В этой статье я сравниваю пять методов поиска похожих векторов:
— полный перебор по евклидову расстоянию с реализацией в Python;
— FAISS с индексами IndexFlatL2 (полный перебор, евклидово расстояние) и IndexIVFFlat (сегментирование по ячейкам, евклидово расстояние);
— векторный поиск в ClickHouse с индексом HNSW и метриками расстояния L2Distance (евклидово расстояние) и cosineDistance (косинусное сходство).
Читать: https://habr.com/ru/companies/infowatch/articles/905916/
#ru
@big_data_analysis | Другие наши каналы
Всем привет! Меня зовут Диана Бутько, я студентка 3 курса, изучаю информационные системы и программирование. В InfoWatch я пришла на практику, и одной из моих задач стал сравнительный анализ различных методов поиска похожих векторов. Это один из ключевых аспектов машинного обучения и анализа данных, используемых в рекомендательных системах, кластеризации, семантическом поиске и других областях. Но чем больше объем данных, тем важнее становится выбор инструментов: полный перебор векторов требует больших вычислительных ресурсов, а в других алгоритмах порой необходимо балансировать между точностью и скоростью поиска.
В этой статье я сравниваю пять методов поиска похожих векторов:
— полный перебор по евклидову расстоянию с реализацией в Python;
— FAISS с индексами IndexFlatL2 (полный перебор, евклидово расстояние) и IndexIVFFlat (сегментирование по ячейкам, евклидово расстояние);
— векторный поиск в ClickHouse с индексом HNSW и метриками расстояния L2Distance (евклидово расстояние) и cosineDistance (косинусное сходство).
Читать: https://habr.com/ru/companies/infowatch/articles/905916/
#ru
@big_data_analysis | Другие наши каналы
Бизнес в эпоху LLM: успешные кейсы и дальнейшие перспективы
Вокруг LLM идёт большой ажиотаж, но помимо шумихи и обещаний, языковые модели в последнее время действительно находят свою нишу, где их можно эффективно применять. В статье я бы хотел поделиться опытом реализации подобных проектов и перспектив, которые мы выделяем как перспективные, некоторыми инсайтами по их применению. Те, кому может быть интересен подобный опыт и для кого языковые модели ещё не превратились в рутину, добро пожаловать под кат :)
Читать: https://habr.com/ru/articles/905596/
#ru
@big_data_analysis | Другие наши каналы
Вокруг LLM идёт большой ажиотаж, но помимо шумихи и обещаний, языковые модели в последнее время действительно находят свою нишу, где их можно эффективно применять. В статье я бы хотел поделиться опытом реализации подобных проектов и перспектив, которые мы выделяем как перспективные, некоторыми инсайтами по их применению. Те, кому может быть интересен подобный опыт и для кого языковые модели ещё не превратились в рутину, добро пожаловать под кат :)
Читать: https://habr.com/ru/articles/905596/
#ru
@big_data_analysis | Другие наши каналы
Data-driven в одном iGaming проекте: когда культура работы с данными не приживается
Казалось бы, преимущества найма специалистов по данным сегодня очевидны — нанимай и принимай качественно лучшие решения. Однако на практике многие компании сталкиваются с трудностями. Предлагаю разобраться
Читать: https://habr.com/ru/articles/907282/
#ru
@big_data_analysis | Другие наши каналы
Казалось бы, преимущества найма специалистов по данным сегодня очевидны — нанимай и принимай качественно лучшие решения. Однако на практике многие компании сталкиваются с трудностями. Предлагаю разобраться
Читать: https://habr.com/ru/articles/907282/
#ru
@big_data_analysis | Другие наши каналы
Анализ видео с помощью Oracle AI Vision
В статье рассказывается, как в пять шагов проводить анализ видео с использованием Oracle AI Vision Video Analysis и Oracle Analytics. Это удобно для быстрой и эффективной обработки видеоданных. Узнайте о современных технологиях анализа видео.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
В статье рассказывается, как в пять шагов проводить анализ видео с использованием Oracle AI Vision Video Analysis и Oracle Analytics. Это удобно для быстрой и эффективной обработки видеоданных. Узнайте о современных технологиях анализа видео.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Analyze Videos with Oracle AI Video and Oracle Analytics
Learn how to analyze videos in 5 steps using Oracle AI Video and Oracle Analytics
DBT: трансформация данных без боли
Привет! Меня зовут Кирилл Львов, я fullstack-разработчик в компании СберАналитика. В этой статье хочу рассказать про мощный инструмент трансформации данных — DBT (Data Build Tool).
Сегодня любой средний и крупный бизнес хранит множество данных в разрозненных источниках (CRM, ERP, HRM, базы данных, файловые хранилища и т.д.). Каждая из этих систем самодостаточна и закрывает определённую боль бизнеса, но собрав данные из таких источников и стандартизировав их, нам открывается возможность анализировать данные, строить модели машинного обучения и принимать на основе этих данных управленческие решения. Для того чтобы реализовать такой подход строятся ELT (или ETL) процессы. ELT (Extract, Load, Transform) — это процесс, состоящий из трех этапов:
Читать: https://habr.com/ru/articles/907540/
#ru
@big_data_analysis | Другие наши каналы
Привет! Меня зовут Кирилл Львов, я fullstack-разработчик в компании СберАналитика. В этой статье хочу рассказать про мощный инструмент трансформации данных — DBT (Data Build Tool).
Сегодня любой средний и крупный бизнес хранит множество данных в разрозненных источниках (CRM, ERP, HRM, базы данных, файловые хранилища и т.д.). Каждая из этих систем самодостаточна и закрывает определённую боль бизнеса, но собрав данные из таких источников и стандартизировав их, нам открывается возможность анализировать данные, строить модели машинного обучения и принимать на основе этих данных управленческие решения. Для того чтобы реализовать такой подход строятся ELT (или ETL) процессы. ELT (Extract, Load, Transform) — это процесс, состоящий из трех этапов:
Читать: https://habr.com/ru/articles/907540/
#ru
@big_data_analysis | Другие наши каналы
Дообучение моделей на своих данных — просто и эффективно
В мире ИИ сложился миф, что для эффективной работы с языковыми моделями нужны огромные вычислительные мощности и команда дорогих специалистов. Но правда в том, что сегодня даже небольшая компания или отдельный разработчик могут создавать умные решения, адаптированные под свои нужды.
Читать: https://habr.com/ru/articles/907542/
#ru
@big_data_analysis | Другие наши каналы
В мире ИИ сложился миф, что для эффективной работы с языковыми моделями нужны огромные вычислительные мощности и команда дорогих специалистов. Но правда в том, что сегодня даже небольшая компания или отдельный разработчик могут создавать умные решения, адаптированные под свои нужды.
Читать: https://habr.com/ru/articles/907542/
#ru
@big_data_analysis | Другие наши каналы
Join таблиц в реальном времени на Apache Flink
Статья посвящена реализации join-операций в системах потоковой обработки данных на базе Apache Flink. Рассматриваются основные подходы к объединению потоков в реальном времени, включая
Читать: https://habr.com/ru/articles/907664/
#ru
@big_data_analysis | Другие наши каналы
Статья посвящена реализации join-операций в системах потоковой обработки данных на базе Apache Flink. Рассматриваются основные подходы к объединению потоков в реальном времени, включая
inner join
, а также паттерны дедупликации. Уделено внимание использованиюKeyedCoProcessFunction
для построения отказоустойчивых и масштабируемых join-пайплайнов. Работа ориентирована на инженеров, строящих real-time витрины и сложные трансформации на Flink в продакшене.Читать: https://habr.com/ru/articles/907664/
#ru
@big_data_analysis | Другие наши каналы
Как Duolingo юзает машинное обучение для прокачки английского: кратко и по делу
Теперь всё, что раньше делали люди — создание курсов, проверку ответов, адаптацию персонализированных заданий — почти полностью взял на себя ИИ.
Duolingo — это уже давно не просто приложение с разноцветными совами и скучными заданиями. В 2025-м генеративный ИИ позволил Duolingo быстро создавать новые курсы, и за год почти удвоить число языковых курсов! Как им это удалось и что это значит лично для тебя — рассказываем подробнее...
Читать: https://habr.com/ru/companies/datafeel/articles/907412/
#ru
@big_data_analysis | Другие наши каналы
Теперь всё, что раньше делали люди — создание курсов, проверку ответов, адаптацию персонализированных заданий — почти полностью взял на себя ИИ.
Duolingo — это уже давно не просто приложение с разноцветными совами и скучными заданиями. В 2025-м генеративный ИИ позволил Duolingo быстро создавать новые курсы, и за год почти удвоить число языковых курсов! Как им это удалось и что это значит лично для тебя — рассказываем подробнее...
Читать: https://habr.com/ru/companies/datafeel/articles/907412/
#ru
@big_data_analysis | Другие наши каналы
Join таблиц в реальном времени на Apache Flink ( Часть 2 )
В данной статье приводится решение проблемы построения витрин данных в реальном времени с помощью Apache Flink. Рассказывается 2 часть подробной реализации решения этой задачи. В данной части рассмотрена проблема учета сообщений на удаление и частично операций
Читать: https://habr.com/ru/articles/908220/
#ru
@big_data_analysis | Другие наши каналы
В данной статье приводится решение проблемы построения витрин данных в реальном времени с помощью Apache Flink. Рассказывается 2 часть подробной реализации решения этой задачи. В данной части рассмотрена проблема учета сообщений на удаление и частично операций
update
, в связи с чем достигается полная консистентность данных СИ с СП при условии гарантии, что ключ join условия не обновляется.Читать: https://habr.com/ru/articles/908220/
#ru
@big_data_analysis | Другие наши каналы
База для аналитики данных. Как получать данные?
Я убеждён в том, что аналитикам данных критически-важно иметь доступ без боли, искажений и рисков к наиболее детализированным данным проекта для исполнения своих обязанностей..
Нет данных - нет мультиков аналитики. Работа только с агрегированными и преобразованными по непрозрачной логике данными приводит к ошибкам и отсутствию доверия от бизнеса.
Статья может быть полезна к изучению при принятии решений о развитии аналитики с 0 в проекте.
К сожалению, вопросу получения данных часто не уделяется хоть какое-то внимание.
Бизнесу интересно не получение данных, а инсайты и рекомендации. Принято отдавать этот вопрос на откуп аналитикам и взаимодействию аналитиков и IT. Только у аналитиков редко есть опыт и понимание лучших практик по работе с данными и для IT задача использования данных аналитиками может быть чем-то чужеродным.
Тем не менее, как-то они договариваются. Не сталкивался с примерами, когда совсем не договорились и никакой аналитики нет.
Сталкивался с разными вариантами урона от реализации.
Что там за варианты
Читать: https://habr.com/ru/articles/908230/
#ru
@big_data_analysis | Другие наши каналы
Я убеждён в том, что аналитикам данных критически-важно иметь доступ без боли, искажений и рисков к наиболее детализированным данным проекта для исполнения своих обязанностей..
Нет данных - нет мультиков аналитики. Работа только с агрегированными и преобразованными по непрозрачной логике данными приводит к ошибкам и отсутствию доверия от бизнеса.
Статья может быть полезна к изучению при принятии решений о развитии аналитики с 0 в проекте.
К сожалению, вопросу получения данных часто не уделяется хоть какое-то внимание.
Бизнесу интересно не получение данных, а инсайты и рекомендации. Принято отдавать этот вопрос на откуп аналитикам и взаимодействию аналитиков и IT. Только у аналитиков редко есть опыт и понимание лучших практик по работе с данными и для IT задача использования данных аналитиками может быть чем-то чужеродным.
Тем не менее, как-то они договариваются. Не сталкивался с примерами, когда совсем не договорились и никакой аналитики нет.
Сталкивался с разными вариантами урона от реализации.
Что там за варианты
Читать: https://habr.com/ru/articles/908230/
#ru
@big_data_analysis | Другие наши каналы
Что такое MLFlow и как он помогает в разработке моделей
Многие начинающие в ML наверняка сталкивались с ситуацией: вы пробуете разные модели, меняете параметры, запускаете обучение снова и снова… и через пару дней уже не можете вспомнить, какой именно набор параметров дал тот самый лучший результат. Или, что еще хуже, вы получили отличную модель на своем ноутбуке, а у коллеги на его машине она не воспроизводится. На помощь придет MLflow.
Читать: https://habr.com/ru/articles/908618/
#ru
@big_data_analysis | Другие наши каналы
Многие начинающие в ML наверняка сталкивались с ситуацией: вы пробуете разные модели, меняете параметры, запускаете обучение снова и снова… и через пару дней уже не можете вспомнить, какой именно набор параметров дал тот самый лучший результат. Или, что еще хуже, вы получили отличную модель на своем ноутбуке, а у коллеги на его машине она не воспроизводится. На помощь придет MLflow.
Читать: https://habr.com/ru/articles/908618/
#ru
@big_data_analysis | Другие наши каналы
👍3
Подготовка Oracle Analytics Cloud к нагрузочному тестированию с Apache JMeter
В статье рассказывается, как корректно настроить Oracle Analytics Cloud для проведения производительного тестирования с помощью Apache JMeter. Этот материал поможет понять ключевые этапы подготовки и оптимизации платформы.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
В статье рассказывается, как корректно настроить Oracle Analytics Cloud для проведения производительного тестирования с помощью Apache JMeter. Этот материал поможет понять ключевые этапы подготовки и оптимизации платформы.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Prepare Oracle Analytics Cloud for Apache JMeter Performance Testing
This post guides you to prepare Oracle Analytics Cloud for Apache JMeter Performance Testing
Персонализация отчетов в OAC: как пользователи могут сохранять фильтры с помощью функции custom states. Узнайте, как эта возможность помогает улучшить рабочие процессы и адаптировать отчеты под свои нужды без дополнительных настроек.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Oracle
Personalize your OAC dashboards using Custom States
This blog explains the custom states feature of the OAC workbooks and how the report end users can personalize their experience with the workbooks by persisting the filters in the custom states.
Oracle Analytics объявила послов 2025 года
В Oracle Analytics назвали своих послов 2025 года — активных участников сообщества, которые вдохновляют, помогают коллегам и продвигают развитие аналитики. Их вклад признан за полезные идеи и поддержку пользователей.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
В Oracle Analytics назвали своих послов 2025 года — активных участников сообщества, которые вдохновляют, помогают коллегам и продвигают развитие аналитики. Их вклад признан за полезные идеи и поддержку пользователей.
Читать подробнее
#en
@big_data_analysis | Другие наши каналы
Ну ты это, заходи если чё: как сделать единую систему авторизации в корпоративных ботах
Привет, Хабр! На связи команда данных «МосТрансПроекта». Недавно мы рассказывали про бот «Информатум», в котором хранятся служебные презентации. При разработке системы мы уделили особое внимание защите чувствительной информации. Поэтому доступ к материалам предоставляется сотрудникам только после авторизации и подтверждения их данных. Но что, если появится еще несколько ботов? Неужели сотрудникам придется каждый раз проходить проверку для доступа к новым сервисам, а администраторам тратить время на верификацию? Для решения этой задачи мы разработали универсальное и экономящее время решение, о котором расскажем в данной статье.
Читать: https://habr.com/ru/companies/mostransproekt/articles/907336/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр! На связи команда данных «МосТрансПроекта». Недавно мы рассказывали про бот «Информатум», в котором хранятся служебные презентации. При разработке системы мы уделили особое внимание защите чувствительной информации. Поэтому доступ к материалам предоставляется сотрудникам только после авторизации и подтверждения их данных. Но что, если появится еще несколько ботов? Неужели сотрудникам придется каждый раз проходить проверку для доступа к новым сервисам, а администраторам тратить время на верификацию? Для решения этой задачи мы разработали универсальное и экономящее время решение, о котором расскажем в данной статье.
Читать: https://habr.com/ru/companies/mostransproekt/articles/907336/
#ru
@big_data_analysis | Другие наши каналы
Ну ты это, заходи если чё: как сделать единую систему авторизации в корпоративных ботах
Привет, Хабр! На связи команда данных «МосТрансПроекта». Недавно мы рассказывали про бот «Информатум», в котором хранятся служебные презентации. При разработке системы мы уделили особое внимание защите чувствительной информации. Поэтому доступ к материалам предоставляется сотрудникам только после авторизации и подтверждения их данных. Но что, если появится еще несколько ботов? Неужели сотрудникам придется каждый раз проходить проверку для доступа к новым сервисам, а администраторам тратить время на верификацию? Для решения этой задачи мы разработали универсальное и экономящее время решение, о котором расскажем в данной статье.
Читать: https://habr.com/ru/companies/mostransproekt/articles/907334/
#ru
@big_data_analysis | Другие наши каналы
Привет, Хабр! На связи команда данных «МосТрансПроекта». Недавно мы рассказывали про бот «Информатум», в котором хранятся служебные презентации. При разработке системы мы уделили особое внимание защите чувствительной информации. Поэтому доступ к материалам предоставляется сотрудникам только после авторизации и подтверждения их данных. Но что, если появится еще несколько ботов? Неужели сотрудникам придется каждый раз проходить проверку для доступа к новым сервисам, а администраторам тратить время на верификацию? Для решения этой задачи мы разработали универсальное и экономящее время решение, о котором расскажем в данной статье.
Читать: https://habr.com/ru/companies/mostransproekt/articles/907334/
#ru
@big_data_analysis | Другие наши каналы
👍2
Пакетная репликация данных в аналитическом ландшафте ХД
Наполнение данными хранилища или озера, как правило, является первым большим шагом к доступности аналитической среды для основного функционала и работы конечных пользователей. От эффективной реализации этой задачи зависят стоимость и длительность всего проекта по созданию хранилища данных и сроки предоставления отдельных data-сервисов.
В этой публикации я поделюсь опытом реализации пакетной загрузки больших данных в аналитические хранилища и расскажу, когда следует выбрать именно пакетную загрузку, а когда – онлайн-подход. Отдельно раскрою, как многолетний опыт решения подобных задач был воплощен в промышленном инструменте репликации данных.
Читать: https://habr.com/ru/companies/datasapience/articles/908882/
#ru
@big_data_analysis | Другие наши каналы
Наполнение данными хранилища или озера, как правило, является первым большим шагом к доступности аналитической среды для основного функционала и работы конечных пользователей. От эффективной реализации этой задачи зависят стоимость и длительность всего проекта по созданию хранилища данных и сроки предоставления отдельных data-сервисов.
В этой публикации я поделюсь опытом реализации пакетной загрузки больших данных в аналитические хранилища и расскажу, когда следует выбрать именно пакетную загрузку, а когда – онлайн-подход. Отдельно раскрою, как многолетний опыт решения подобных задач был воплощен в промышленном инструменте репликации данных.
Читать: https://habr.com/ru/companies/datasapience/articles/908882/
#ru
@big_data_analysis | Другие наши каналы
Федеративное обучение: потенциал, ограничения и экономические реалии внедрения
Федеративное обучение (Federated Learning, FL) становится всё более заметным элементом технологической повестки в условиях ужесточающихся требований к конфиденциальности данных и законодательных ограничений на их передачу. На прошлой неделе при поддержке канала @noml_community мы поговорили с коллегами (Дмитрий Маслов, Михаил Фатюхин, Денис Афанасьев, Евгений Попов, Роман Постников, Павел Снурницын) о Federated Learning. Получилось неожиданно интересно и полезно. Много говорили о кейсах, чуть меньше - о практических аспектах реализации, особенностях работы с данными и о специфике конфиденциальных вычислений. С большим удовольствием пообщались с коллегами по цеху и основными экспертами этой отрасли.
https://www.youtube.com/watch?v=JpApLfde38I&list=WL&index=1&t=12s
Мой вывод - FL как технология и как предмет сделали большой шаг вперед к тому, что бы технологии и потребности рынка “пересеклись” в точки эффективности и кажется что такой момент уже близко.
Читать: https://habr.com/ru/articles/909014/
#ru
@big_data_analysis | Другие наши каналы
Федеративное обучение (Federated Learning, FL) становится всё более заметным элементом технологической повестки в условиях ужесточающихся требований к конфиденциальности данных и законодательных ограничений на их передачу. На прошлой неделе при поддержке канала @noml_community мы поговорили с коллегами (Дмитрий Маслов, Михаил Фатюхин, Денис Афанасьев, Евгений Попов, Роман Постников, Павел Снурницын) о Federated Learning. Получилось неожиданно интересно и полезно. Много говорили о кейсах, чуть меньше - о практических аспектах реализации, особенностях работы с данными и о специфике конфиденциальных вычислений. С большим удовольствием пообщались с коллегами по цеху и основными экспертами этой отрасли.
https://www.youtube.com/watch?v=JpApLfde38I&list=WL&index=1&t=12s
Мой вывод - FL как технология и как предмет сделали большой шаг вперед к тому, что бы технологии и потребности рынка “пересеклись” в точки эффективности и кажется что такой момент уже близко.
Читать: https://habr.com/ru/articles/909014/
#ru
@big_data_analysis | Другие наши каналы
Как научить ИИ обслуживать клиентов не хуже человека?
Новость о мощи ChatGPT прогремела уже более двух лет назад, однако крупные компании ещё до сих пор полностью не автоматизировали поддержку клиентов. В этой статье разберём на пальцах, какие данные и надстройки нужны для больших языковых моделей, как сделать так, чтобы внедрение было экономически целесообразным и, наконец, что делать с чат-ботами прошлого поколения.
Читать: https://habr.com/ru/companies/alfa/articles/904028/
#ru
@big_data_analysis | Другие наши каналы
Новость о мощи ChatGPT прогремела уже более двух лет назад, однако крупные компании ещё до сих пор полностью не автоматизировали поддержку клиентов. В этой статье разберём на пальцах, какие данные и надстройки нужны для больших языковых моделей, как сделать так, чтобы внедрение было экономически целесообразным и, наконец, что делать с чат-ботами прошлого поколения.
Читать: https://habr.com/ru/companies/alfa/articles/904028/
#ru
@big_data_analysis | Другие наши каналы
LLM-судья: как LLM отсекает правду от лжи?
LLM-as-a-judge — распространённая техника оценки продуктов на основе LLM.
Популярность этой техники обусловлена практичностью: она представляет собой удобную альтернативу дорогостоящей человеческой оценке при анализе открытых текстовых ответов.
Оценивать сгенерированные тексты сложно, будь то «простой» саммари или диалог с чат-ботом. Метрики типа accuracy плохо работают, поскольку «правильный» ответ может быть сформулирован множеством способов, не обязательно совпадающих с образцом. Кроме того, стиль или тон — субъективные характеристики, которые сложно формализовать.
Люди способны учитывать такие нюансы, но ручная проверка каждого ответа плохо масштабируется. В качестве альтернативы появилась техника LLM-as-a-judge: для оценки сгенерированных текстов используются сами LLM. Интересно, что LLM одновременно являются и источником проблемы, и её решением!
Читать: https://habr.com/ru/articles/905728/
#ru
@big_data_analysis | Другие наши каналы
LLM-as-a-judge — распространённая техника оценки продуктов на основе LLM.
Популярность этой техники обусловлена практичностью: она представляет собой удобную альтернативу дорогостоящей человеческой оценке при анализе открытых текстовых ответов.
Оценивать сгенерированные тексты сложно, будь то «простой» саммари или диалог с чат-ботом. Метрики типа accuracy плохо работают, поскольку «правильный» ответ может быть сформулирован множеством способов, не обязательно совпадающих с образцом. Кроме того, стиль или тон — субъективные характеристики, которые сложно формализовать.
Люди способны учитывать такие нюансы, но ручная проверка каждого ответа плохо масштабируется. В качестве альтернативы появилась техника LLM-as-a-judge: для оценки сгенерированных текстов используются сами LLM. Интересно, что LLM одновременно являются и источником проблемы, и её решением!
Читать: https://habr.com/ru/articles/905728/
#ru
@big_data_analysis | Другие наши каналы
👍1