Data Analysis / Big Data
2.83K subscribers
569 photos
4 videos
2 files
2.67K links
Лучшие посты по анализу данных и работе с Big Data на русском и английском языке

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels
Download Telegram
Time Horizon моделей AI: почему рост скорости зависит от сферы применения

В статье Measuring AI Ability to Complete Long Software Tasks (Kwa & West и др., 2025) команда METR ввела понятие 50% time horizon модели: это длительность задачи (в пересчете на время выполнения профессиональным подготовленным человеком), которую модель может автономно завершить с вероятностью 50%. Мы оценили time horizon у флагманских моделей, выпущенных с 2019 года, на бенчмарке, объединяющем три набора задач в области программирования и исследований, с длительностью от 1 секунды до 16 часов для человека (HCAST, RE-Bench и SWAA; далее — METR-HRS). METR обнаружила, что time horizon удваивается каждые 7 месяцев, с возможным ускорением до 4 месяцев в 2024 году.

Существенным ограничением того анализа был домен задач: все они относились к программной инженерии или исследовательской деятельности, в то время как известно, что способности AI значительно варьируются между типами задач[1]. В этом исследовании мы рассматриваем, сохраняются ли аналогичные тренды к другим типам задач, включая автономное вождение и агентное использование компьютера, применяя методологию, позволяющую оценивать time horizon на менее детализированных данных. Данные для многих из этих бенчмарков менее надежны по сравнению с оригинальной работой, и результаты по каждому отдельному бенчмарку следует трактовать как шумные. Однако в совокупности они демонстрируют схожую динамику.

Домен программного обеспечения и reasoning-задач — таких как научные QA (GPQA), математические соревнования (MATH, Mock AIME), полуреалистичные задачи по программированию (METR-HRS) и соревновательное программирование (LiveCodeBench) — показывает time horizon в диапазоне 50–200+ минут, который в настоящее время удваивается каждые 2–6 месяцев. Таким образом, ~100-минутные time horizons и ~4-месячное время удвоения, наблюдавшиеся на METR-HRS в исходной работе, скорее всего, не являются исключением.


Читать: https://habr.com/ru/articles/936522/

#ru

@big_data_analysis | Другие наши каналы
Мы писали ранее, что 12 сентября пройдёт big tech night. Событие придумали в Яндексе и организовали вместе со Сбером, X5, Т-Банком и Lamoda. Впервые топовые IT-компании одновременно откроют двери офисов в Москве с 18:00 до 00:00 и покажут специалистам, где рождаются технологии.

Пора рассказать о тех, кто выйдет на сцену⚡️

📣 Кто и о чём расскажет на big tech night? Начинаем представлять спикеров и темы. Читайте на карточках.

➡️ А подробнее про доклады рассказываем на сайте

Подписывайтесь:
💬 big tech night

Реклама. Рекламодатель: ООО "Яндекс" ИНН 7736207543
Как t2 масштабировал BI-аналитику на 4500+ пользователей: кейс миграции на FineBI

Уходящие с рынка западные BI-решения оставили компании перед сложным выбором. Как найти альтернативу, которая не только заменит функционал, но и позволит масштабировать self-service аналитику на всю организацию? В этой статье делимся реальным кейсом компании t2 (бывший Tele2), которая за два года превратила FineBI в backbone корпоративной аналитики с одной из самых больших инсталляций в России. 400+ разработчиков отчетности, 3500+ общих лицензий, кластерная архитектура и автоматизированное обучение — рассказываем, как это работает на практике.


Читать: https://habr.com/ru/companies/glowbyte/articles/939470/

#ru

@big_data_analysis | Другие наши каналы
Интеграция OpenAI LLM с Oracle Analytics

В статье рассказывается, как подключить большие языковые модели OpenAI к Oracle Analytics. Подробно описан процесс получения API-ключей и настройки интеграции для расширения возможностей аналитики.

Читать подробнее

#en

@big_data_analysis | Другие наши каналы
Новая инициатива от команды Oracle Analytics Service Excellence направлена на поддержку и развитие сообщества Fusion Data Intelligence. Проект помогает создавать и распространять полезные аналитические артефакты, облегчая совместную работу и обмен знаниями. Узнайте подробнее.

Читать подробнее

#en

@big_data_analysis | Другие наши каналы
Как Oracle Fusion Data Intelligence упрощает работу с документами

Статья рассказывает, как возможности Data Augmentation и Semantic Model Extension в Oracle Fusion Data Intelligence помогают напрямую получать ссылки на вложения в счетах, что снижает ручную работу и повышает прозрачность данных.

Читать подробнее

#en

@big_data_analysis | Другие наши каналы
Как крупные компании используют данные для стратегии? Финансовый директор Vopak Маргарета Хенрих-Квист делится опытом внедрения Oracle Fusion Data Intelligence для принятия важных управленческих решений и развития бизнеса.

Читать подробнее

#en

@big_data_analysis | Другие наши каналы
Apache Superset — почему все топы рынка выбрали именно его?

Попытка по-иному ответить на вопрос "какую BI-системы выбрать"? Вместо сравнения систем сделаем проще - оценим рынок и расскажем о возможностях той системы, которую рынок предпочел


Читать: https://habr.com/ru/articles/939876/

#ru

@big_data_analysis | Другие наши каналы
Личный топ методов Pandas

Pandas — это изумительная библиотека на Python для анализа и обработки данных. Она настолько хороша, что проще сказать, чего она не умеет, чем перечислить все её возможности. В мире аналитики это настоящий швейцарский нож.

В этой статье я хочу поделиться личным топом методов, которые помогают в первичной обработке больших данных.


Читать: https://habr.com/ru/articles/940028/

#ru

@big_data_analysis | Другие наши каналы