Data Analysis / Big Data
2.83K subscribers
569 photos
4 videos
2 files
2.66K links
Лучшие посты по анализу данных и работе с Big Data на русском и английском языке

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels
Download Telegram
Разметка изображений: самый полный гайд

Представьте себе, что от точности разметки изображений зависит успех вашего проекта: будь то способность нейросети распознавать сложные объекты или автоматизация рутинных задач. Но в чем ее специфика, какие виды разметки изображений существуют и какой тип аннотации лучше подходит под ваш проект?

В этой статье мы раскрываем все тонкости процесса, делимся проверенными методами и реальными кейсами от команды Data Light, чтобы помочь вам вывести проекты на новый уровень. Если вы хотите разобраться в разметке изображений и узнать, как избежать подводных камней, эта статья точно будет вам полезна.


Читать: https://habr.com/ru/companies/data_light/articles/852848/

#ru

@big_data_analysis | Другие наши каналы
Оценка LLM: метрики, фреймворки и лучшие практики

Дженсен Хуанг в своем выступлении на саммите «Data+AI» сказал: «Генеративный ИИ есть везде, в любой отрасли. Если в вашей отрасли еще нет генеративных ИИ, значит вы просто не обращали внимания на это».

Однако широкое распространение вовсе не означает, что эти модели безупречны. В реальных бизнес-кейсах модели очень часто не достигают цели и нуждаются в доработке. Вот тут-то и приходят на помощь оценки LLM: они помогают убедиться, что модели надежны, точны и соответствуют бизнес-предпочтениям.

В этой статье мы подробно разберем, почему оценка LLM имеет решающее значение, и рассмотрим метрики, фреймворки, инструменты и сложности оценки LLM. Мы также поделимся некоторыми надежными стратегиями, которые мы разработали в ходе работы с нашими клиентами, а также расскажем о лучших практиках.

Что такое оценка LLM?

Оценка LLM - это процесс тестирования и измерения того, насколько хорошо крупные языковые модели работают в реальных ситуациях. При тестировании этих моделей мы наблюдаем, насколько хорошо они понимают и отвечают на вопросы, насколько плавно и четко они генерируют текст и имеют ли их ответы смысл в контексте. Этот шаг очень важен, потому что он помогает нам выявлять любые проблемы и улучшать модель, гарантируя, что она может эффективно и надежно справляться с задачами.

Зачем вам нужно оценивать LLM?

Все просто: чтобы убедиться, что модель соответствует задаче и ее требованиям. Оценка LLM гарантирует, что она понимает и точно реагирует, правильно обрабатывает различные типы информации и общается безопасным, понятным и эффективным способом. Оценка LLM позволяет нам точно настроить модель на основе реальной обратной связи, улучшая ее производительность и надежность. Проводя тщательные оценки, мы гарантируем, что LLM полностью может удовлетворять потребности своих пользователей, будь то ответы на вопросы, предоставление рекомендаций или создание контента.


Читать: https://habr.com/ru/articles/852046/

#ru

@big_data_analysis | Другие наши каналы
Что такое DWH?

DWH (Data Warehouse или по русски Хранилище данных) - это специализированная система для хранения и управления большими объемами данных, которые объединяются из разных источников с целью анализа и построения отчетов

Короче, это место, где все нужные данные из разных мест собираются и потом ими уже удобно пользоваться - строить разные отчетики, строить ИИ на благо всему человечеству и подобные вещи

Грубо говоря, задача при построении хорошего DWH состоит в том, чтобы построить Базу Данных и все необходимое вокруг него, в которой будут лежать правильные данные в удобном виде и в которую можно слать большие-сложные SQL запросы и не бояться, что что-то сломается и всем этим было удобно пользоваться


Читать: https://habr.com/ru/articles/852910/

#ru

@big_data_analysis | Другие наши каналы
Apache Flink: Unit и E2E-тестирование оператора с таймерами в Apache Flink

Привет, Хабр! На связи Александр Бобряков, техлид в команде МТС Аналитики. В предыдущей части я рассказал про создание Flink-джобы Kafka-to-Kafka с оператором на основе встроенных таймеров. Такой пайплайн позволяет создавать вызов через определенное время после обработки события.

В этом посте я расскажу, как можно протестировать операторы с таймерами и какие подводные камни могут возникнуть.

Весь разбираемый исходный код есть в репозитории AlexanderBobryakov/flink-spring. В master-ветке представлен итоговый проект по всей серии. Эта статья соответствует релизной ветке с названием release/8_Test_for_Trigger_Flink_Job.

Это мой девятый материал про Apache Flink. По мере выхода новых ссылки на них будут появляться ниже.

Список моих статей про Flink:


Читать: https://habr.com/ru/companies/ru_mts/articles/853200/

#ru

@big_data_analysis | Другие наши каналы
Чем можно заняться в IT

IT – это не пузырь, который может лопнуть. Оно уже настолько плотно вошло в нашу жизнь, что повсюду, куда бы мы ни посмотрели, мы видим его следы, и это не изменится.

В этой статье вы узнаете, что такое IT и чем можно заняться в IT помимо программирования.


Читать: https://habr.com/ru/articles/852224/

#ru

@big_data_analysis | Другие наши каналы
Фреймворк ARTEM(L): Как мы автоматизируем обучение и обновление моделей в Альфа-банке

Или как избавить DS от рутинных задач по обучению и обновлению моделей и их дальнейшему передеплою в проде?

Всем привет! Я Настя Бондарева, senior Data Scientist в Хабе Юридических Лиц Альфа-Банка, лидирую инициативу ARTEML (AutoReTrainable ML). В статье расскажу, как мы упростили себе работу и часть рутинных задач, число которых росло как снежный ком с ростом количества применяемых моделей.


Читать: https://habr.com/ru/companies/alfa/articles/852790/

#ru

@big_data_analysis | Другие наши каналы
Как мы отбираем и обучаем специалистов: от первых шагов до реальных проектов

В чем секрет качественных данных и точной разметки? Мы в Data Light знаем: за каждым успешным проектом стоят не только технологии, но и люди — специалисты, отобранные после нескольких этапов тестирований и обученные на настоящих проектах.

Мы знаем: чем лучше подготовлен исполнитель, тем выше итоговое качество работы. Я, Артем Каукалов, руководитель отдела обучения, поделюсь опытом нашей компании — как найти людей, которые помогут вам достичь максимальных результатов, и как правильно выстроить их процесс учебы.


Читать: https://habr.com/ru/companies/data_light/articles/853372/

#ru

@big_data_analysis | Другие наши каналы
Какую архитектуру конвейера данных следует использовать?

Здесь представлен обзор архитектур конвейеров данных, которые вы можете использовать сегодня.

Данные важны для любого приложения и нужны для разработки эффективных конвейеров для доставки и управления информацией. Как правило, конвейер данных создаётся, когда вам необходимо обрабатывать данные в течение их жизненного цикла. Конвейер данных может начинаться там, где данные генерируются и хранятся в любом формате. Конвейер данных может обеспечивать анализ данных, их использования для целей бизнеса, долговременного хранения, а также для тренировки моделей машинного обучения.

Читать: https://habr.com/ru/companies/piter/articles/853400/

#ru

@big_data_analysis | Другие наши каналы
👍2
Как мы сделали систему для спасения интернета от токсичности

Токсичность в интернете — распространенная проблема, с которой сталкивался каждый. В период бурного развития AI само собой напрашивается решение для автоматического удаления токсичных паттернов с сохранением исходного смысла и оригинального стиля автора. Один из таких подходов - использование NLP seq2seq моделей, которые мы обучаем на парах (тоcкичное предложение; нетоксичное предложение):


Читать: https://habr.com/ru/articles/853586/

#ru

@big_data_analysis | Другие наши каналы
«Да будет свет!», — подумали мы. И стал свет. Краткая история обучения нейросветодизайнера нейросветодизайну

Давным-давно, скажем, этим летом, нас посетила удачная мысль включить повсюду свет и озарить ночные города. Так родился проект по обучению нейросети сложному искусству светодизайна.

Разумеется, мы были не первыми, кто до этого додумался, но поскольку бум ИИ удачно наложился на развитие инфраструктуры и появление новых зданий в разных городах РФ (а еще осень, темно, холодно) – было решено взяться за дело. Светодизайн зданий – сложная область, которая удачно сочетает в себе архитектурное проектирование, инженерные достижения, дизайн и человеческий гений. В помощь последнему мы решили добавить искусственный интеллект. Оказалось, что после долгих тренировок он способен:


Читать: https://habr.com/ru/articles/853552/

#ru

@big_data_analysis | Другие наши каналы
Как оценить LLM модель

В одном из прошлых блогов я представил концепцию тестирования крупных языковых моделей (LLM). Однако тестирование крупных языковых моделей (LLM) - достаточно сложная тема, которая требует дальнейшего изучения. Существует несколько соображений относительно тестирования моделей машинного обучения и, в частности, LLM, которые необходимо учитывать при разработке и развертывании вашего приложения. В этом блоге я предложу общую структуру, которая будет служить минимальной рекомендацией для тестирования приложений, использующих LLM, включая разговорные агенты, расширенную генерацию поиска и агентов и т. д.


Читать: https://habr.com/ru/articles/853542/

#ru

@big_data_analysis | Другие наши каналы
Интеграция Oracle Data Flow с Oracle Analytics

Узнайте, как связать Oracle Cloud Infrastructure Data Flow SQL Endpoint с Oracle Analytics Cloud. Погрузитесь в процесс интеграции и откройте новые возможности для анализа данных, превращая сложные задачи в простые решения.

Читать подробнее

#en

@big_data_analysis | Другие наши каналы
👍1
Гайд по трекингу экспериментов в ML

Многие привыкли, что в качестве результата эксперимента достаточно метрик и просто сохранения обученной модели, однако в современном мире машинного обучения трекинг экспериментов имеет ключевое значение для обеспечения воспроизводимости, надежности и эффективности. Давайте рассмотрим главные этапы проведения эксперимента и проблемы, которые могут возникнуть. Мы обсудим основы трекинга экспериментов в машинном обучении и исследуем, как вы можете упростить свой рабочий процесс с помощью правильных инструментов и практик. В конце я также поделюсь преимуществами одного из инструментов.


Читать: https://habr.com/ru/companies/cinimex/articles/838888/

#ru

@big_data_analysis | Другие наши каналы
Как мы внедрили CockroachDB на DBaaS в компанию классических СУБД

Привет! Меня зовут Полина Кудрявцева, я инженер DBA в Авито. В этой статье я расскажу о том, как мы внедрили CockroachDB на DBaaS в компанию классических СУБД, а также опишу его плюсы, минусы и особенности работы.


Читать: https://habr.com/ru/companies/avito/articles/854732/

#ru

@big_data_analysis | Другие наши каналы
Как управлять большими командами? 3 совета для менеджера

Когда я начинал свою карьеру в разметке данных, я и представить не мог, что через несколько лет продолжу работать в индустрии и буду управлять целым направлением.

Я прошел путь от разметчика до позиции Head of Moderation & Head of Special Projects в Data Light. Теперь под моим руководством работает 465 человек, параллельно за раз моя команда ведет до 64 проектов.

Сейчас я понимаю, что для успеха в этой сфере критически важны три вещи: постоянное обучение, систематизация и навыки коммуникации. В этой статье я хочу поделиться главными советами для начинающих менеджеров.


Читать: https://habr.com/ru/companies/data_light/articles/854882/

#ru

@big_data_analysis | Другие наши каналы
Ужасный код: если бы злодеи хорроров стали программистами

Мы погрузились в мрачный мир фантазий и представили, какие языки программирования и роли могли бы выбрать самые известные злодеи хоррор-фильмов, если бы они ворвались в IT.

Читать: «Ужасный код: если бы злодеи хорроров стали программистами»

#ru

@big_data_analysis | Другие наши каналы
👍2
Работа с календарями в BI — с DAX и без него

Привет, Хабр! При работе с Business Intelligence и дашбордами практически в любой предметной области встречаются даты и календари, поэтому от выбора представления дат и их составных частей (день, месяц, квартал, полугодие, год и т.д.), ключей дат и таблицы с датами зависит производительность всех дашбордов. В этой статье я расскажу о том, как можно оптимизировать работу с датами в Visiology — с использованием DAX и без него. Интересно? Добро пожаловать под кат! :)


Читать: https://habr.com/ru/companies/visiology/articles/855178/

#ru

@big_data_analysis | Другие наши каналы
Инфраструктура для Data-Engineer DBT

dbt является мощным фреймворком, который включает в себя два популярных языка: SQL + Python.

При помощи dbt можно создавать разные "слои" данных или выделить dbt только под один слой, к примеру dm.

При помощи понятного и всем известного SQL интерфейса можно создавать разные модели для вашего DWH или Data Lake.


Читать: https://habr.com/ru/articles/854990/

#ru

@big_data_analysis | Другие наши каналы
Необычные вкусы покупателей: что такое товарные пары и как их исследовать

Привет, Хабр! На связи команда продуктовой аналитики.

Подбор и обновление ассортимента товаров — постоянная головная боль для любого ритейлера. Это трудоемкий процесс, где каждая ошибка стоит реальных денег. В ecom.tech мы стараемся сделать его проще при помощи автоматизации, а заодно изучаем предпочтения покупателей. На этот раз мы искали, что обычно покупают в паре – так называемые комплементарные товары.

В этой статье расскажем:
- с чем обычно покупают лапшу быстрого приготовления, а с чем — детское питание;
- как география, время суток и другие факторы влияют на выбор покупателей;
- как все эти полученные знания можно применить в ассортиментных матрицах дарксторов и бизнес-процессах ритейла.


Читать: https://habr.com/ru/companies/ecom_tech/articles/854036/

#ru

@big_data_analysis | Другие наши каналы
Система сквозного логирования с передачей единого идентификатора между независимыми задачами Airflow

Привет! Меня зовут Никита Хилов, я работаю в билайне уже более десяти лет. Начинал я работать с поддержкой систем фиксированного фиксированного биллинга, впоследствии я отвечал за разработку и поддержку различных расчетов по системам управленческой или корпоративной отчетности. А сейчас я работаю в роли тимлида дата-инженеров в блоке по архитектуре и инфраструктуре данных и отвечаю за управление разработкой и сопровождением программных продуктов компании по различным точкам бизнес-приложения.

Итак, какие же вопросы мы обсудим в этой серии постов. Сегодня я хочу осветить вопросы касаемо того, как же нам организовывать, компоновать и в принципе заставить работу систему журналирования наших расчетов для таких случаев, когда наш общепринятый ключ периодики, на котором мы обычно строим свои расчеты, перестает быть однозначным идентификатором той итерации процесса подготовки данных, на которую мы сейчас смотрим, и от которых мы ждем результаты.

Мы обсудим, например, когда такое происходит и что для этого является катализатором. Рассмотрим механики и механизмы, которые дают возможность связывать независимые процессы и цепочки подготовки данных в единое целое.

И в дополнение расскажу, как мы эту проблему решали в своем продукте.

Но прежде всего давайте определим для чего нам это, в принципе, нужно.


Читать: https://habr.com/ru/companies/beeline_tech/articles/855274/

#ru

@big_data_analysis | Другие наши каналы
Импортозамещение Data Quality стека в нефтегазохимии: опыт СИБУРа

В СИБУРе много данных, которые текут в режиме реального времени с многочисленных датчиков на разных производствах, эти данные нужно собирать, хранить, обрабатывать и анализировать, чтобы компания могла принимать правильные бизнес-решения. И от качества инфраструктуры для работы с данными зависит рентабельность производств и прибыль компании в целом, а это жизненно важные показатели.

В небольшом цикле из двух статей мы разберём опыт СИБУРа в создании, поддержке и развитии DQ (Data Quality — качество данных) сервиса для DWH (Data Warehouse — хранилище данных) в условиях санкций и исчезающих вендоров проверенных и привычных решений.

Рассказывать об этом опыте будет Александр Бергер, Lead DQ Analyst в Цифровом СИБУРе, которому посчастливилось лидить процесс создания DQ-сервиса на решениях вендора, который решил покинуть рынок РФ в разгар рабочего процесса.


Читать: https://habr.com/ru/companies/sibur_official/articles/855310/

#ru

@big_data_analysis | Другие наши каналы