Ivan Begtin
7.99K subscribers
1.87K photos
3 videos
101 files
4.58K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
Полезное чтение про данные, технологии и не только:
- Founder Mode [1] "Режим основателя", текст от Пола Грэхема о том что часто важно чтобы основатели стартапов оставались вовлечёнными в бизнес, а не переводили его в режиме менеджмента. Вроде как очевидно, но мысль и канва рассуждения полезны чтобы освежить эту истину.
- How a startup feels [2] как ощущается жизнь в стартапе, текст от Benn Stancil, хорошо написано и просто таки ощущается. Перекликается с текстом Пола Грэхема.
- Art of Finishing [3] "Искусство завершать" , тоже полезный, уже с более техническим взглядом у автора, про то что надо доделывать то что надо доделывать применительно к программной инженерии.

Ссылки:
[1] https://paulgraham.com/foundermode.html
[2] https://substack.com/home/post/p-148046562
[3] https://www.bytedrum.com/posts/art-of-finishing/

#readings #startup
Ещё один полезный для чтения текст Open Source is not a Business Model
[1] в сторону продвижения Fair Source [2] как открытие кода с ограничениями не мешающими на нём зарабатывать.

Лично я считаю что Fair Source - это модель вполне имеющая право на существование. Станет популярной - хорошо, не станет - тоже хорошо.

Острота в дискуссиях об открытом коде возникает когда проекты меняют лицензию. Вроде того же Elastic с их прыжками по лицензиям, туда и обратно. Что не отменяет качество самого продукта, отметим.

Ссылки:
[1] https://cra.mr/open-source-is-not-a-business-model
[2] https://fair.io

#opensource #readings #softwaredevelopment
Полезное чтение про данные, технологии и не только:
- The Modern CLI Renaissance [1] о том как инструменты командной строки переживают ренессанс будучи переписанными, в основном, на Rust. Тоже наблюдаю эту картину и что тут скажешь, хорошо что это происходит.
- Nvidia and Oracle team up for Zettascale cluster: Available with up to 131,072 Blackwell GPUs [2] полным ходом гонка ИИ кластеров. Oracle и NVIDIA запускают в начале 2025 г. кластер на 2.4 зетафлопса, сравнивать сложно, это просто много
- Android apps are blocking sideloading and forcing Google Play versions instead [3] Google начали внедрять в андроид функцию установки приложения через Google Play если ты пытаешься поставить его из другого источника. То есть если ты из внешнего магазина загружаешь приложение которое есть в Google Play то тебя обязывают ставить то что в Google Play.
- Google will now link to The Internet Archive to add more context to Search results [4] Google теперь даёт ссылки в результатах поиска на Интернет Архив вместо их собственного кэша, на который они ранее ссылки удалили. Надеюсь они при этом дали денег Интернет Архиву, потому что как бы их не за ддосили.

Ссылки:
[1] https://gabevenberg.com/posts/cli-renaissance/
[2] https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidia-and-oracle-team-up-for-zettascale-cluster-available-with-up-to-131072-blackwell-gpus
[3] https://arstechnica.com/gadgets/2024/09/android-now-allows-apps-to-block-sideloading-and-push-a-google-play-version/
[4] https://9to5google.com/2024/09/11/google-search-internet-archive-wayback-machine/

#software #data #google #android #readings
В качестве полезного чтения свежий доклад State of AI report 2024 [1]. Много любопытного не только про ИИ, но и про датасеты для машинного обучения и прогресс в исследованиях с помощью ИИ.

Ссылки:
[1] https://www.stateof.ai/2024-report-launch

#ai #reports #readings
В рубрике полезного чтения про данные, технологии и не только:
- G7 Toolkit for Artificial Intelligence in the Public Sector [1] руководство от стран G7 по созданию и эксплуатации доверительного ИИ в госсекторе. Иначе говоря рекомендации госслужащим по работе с ИИ.
- Data’s Role in Unlocking Scientific Potential [2] обзор инициатив и набор рекомендаций о том как доступность данных для учёных меняет науку в США. Если коротко, то больше открытости - больше науки.
- The Age of AI Nationalism and Its Effects [3] о стремительном развитии ИИ национализма
- Interesting startup idea: benchmarking cloud platform pricing [4] любопытная идея для стартапа, сравнение расценок облачных платформ. Не знаю насчёт стартапа, но проблема есть, без сомнения.

Ссылки:
[1] https://www.oecd.org/en/publications/g7-toolkit-for-artificial-intelligence-in-the-public-sector_421c1244-en.html
[2] https://www.scsp.ai/wp-content/uploads/2024/10/Datas-Role-in-Unlocking-Scientific-Potential-Paper.pdf
[3] https://www.cigionline.org/publications/the-age-of-ai-nationalism-and-its-effects/
[4] https://blog.pragmaticengineer.com/spare-cores/

#opendata #ai #ideas #readings
Подборка полезного чтения про данные, технологии и не только:
- How we built a new powerful JSON data type for ClickHouse [1] статья от Павла Круглого про реализацию нового типа JSON в ClickHouse. Много подробностей и можно предполагать что новые фичи и этот тип стоит опробовать. По моему опыту ещё совсем недавно ClickHouse резко проигрывал DuckDB в разборе/импорте любого типа JSON документов. В общем надо тестировать, если всё так хорошо как написано, это может быть альтернативой MongoDB
- GERDA - German Elections Database [2] научный онлайн проект с базой по выборам в Германии с 1953 года. Доступно в виде наборов данных и пакета для языка R.
- Why techies leave Big Tech [3] почему технари покидают бигтехи? Да много почему, где-то увольнения, где-то стагнация и тупики в карьере. Автор пишет про основные причины и о том почему не надо так в бигтехи стремиться. Лично я для себя вообще не представляю что могло бы подтолкнуть там работать (ну если только бигтех не придёт с большим кошельком инвестиций в наш стартап Dateno, но это совсем другая тема)

Ссылки:
[1] https://clickhouse.com/blog/a-new-powerful-json-data-type-for-clickhouse
[2] https://www.german-elections.com/
[3] https://newsletter.pragmaticengineer.com/p/leaving-big-tech

#readings #data #datasets #opendata #careers #bigtech
Хорошая статья в Системном блоке про судьбу ABBYY, их продукта Compreno и научного подхода в переводе текстов [1]. Если вкратце, то судьба печально, LLM ИИ пожирают мир. Я помню в 2010-х разговоры про Compreno как люди вовлеченные в этот проект его расхваливали, но вживую его так и не успел попробовать, а теперь уже и непонятно зачем.

А вообще то что пишет автор про то что простые методы обученные на бесконечном объёме данных дают больший эффект - это не только про гибель трансформацию компьютерной лингвистики, это и про будущее онтологического моделирования, это про судьбу проектов вроде Wolfram Alpha (похоже недолгую уже), это про применение LLM в моделировании и систематизации данных.

Вот я вам приведу пример, у нас в Dateno десятки миллионов карточек датасетов и далеко не у всех есть привязка к категориям, не у всех есть теги, не у всех есть геометки и тд.. Можно вложить усилия и категоризировать их вручную, а можно натравить одну или несколько LLM и проделать эту работу. Можно ещё на несколько задач LLM натравить и будет ещё больший эффект, вопрос лишь в цене запросов или развертывания open source LLM.

А что говорить про задачи онтологического моделирования во многих исследовательских проектах. Я всё жду когда появятся научные статьи с тезисами вроде "Мы заменили команду из 10 онтологов на LLM модель и результат был не хуже".

Ссылки:
[1] https://sysblok.ru/blog/gorkij-urok-abbyy-kak-lingvisty-proigrali-poslednjuju-bitvu-za-nlp/

#thoughts #readings #ai
Документы бюджета Великобритании Autumn Budget 2024 [1] интересно смотреть сразу с нескольких точек зрения. Во первых они публикуют документ бюджета в виде книги [2], с графиками и очень понятными таблицами и сразу с присвоением ISBN и хорошо отформатированной веб версией [3].

А во вторых, и это интереснее, отдельным приложением идёт документ с упоминанием всех источников данных [4]. Буквально в стиле "в таком то разделе, таком то параграфе приведены данные ссылка на которых вот тут".

А также множество сопровождающих документов.

После чтения бюджетов многих стран, в разных форматах, читать этот значительно легче и понятнее. Хотя лично я жду когда же когда-нибудь появится моделирование бюджетов и госполитики интерактивными и машинными инструментами.

Ссылки:
[1] https://www.gov.uk/government/publications/autumn-budget-2024
[2] https://assets.publishing.service.gov.uk/media/672232d010b0d582ee8c4905/Autumn_Budget_2024__web_accessible_.pdf
[3] https://www.gov.uk/government/publications/autumn-budget-2024/autumn-budget-2024-html
[4] https://assets.publishing.service.gov.uk/media/6722236e4da1c0d41942a986/Autumn_Budget_2024_-_Data_Sources__1_.pdf

#openbudgets #data #opendata #uk #readings
Полезное чтение про данные, технологии и не только:
- All the data can be yours [1] автор пишет про реверс-инжиниринг API. Ха, подержи моё пиво! Я могу рассказать об этом куда больше, а было бы и время то и книжку написать. Но читать про опыт других всегда полезно, всегда есть что-то новое.
- AI protein-prediction tool AlphaFold3 is now open source [2] в Google заопенсорсили AlphaFold3, движок для предсказания структур протеинов с помощью ИИ. Для некоммерческого использования, конечно.
- The Death and Life of Prediction Markets at Google [3] неожиданное и любопытное, про внутренние инструменты предсказаний в Google и, заодно, немало про их внутреннюю культуру.

Ссылки:
[1] https://jero.zone/posts/reverse-engineering-apis
[2] https://www.nature.com/articles/d41586-024-03708-4
[3] https://asteriskmag.com/issues/08/the-death-and-life-of-prediction-markets-at-google

#readings #tech
Полезное чтение про данные, технологии и не только:
- The Death of Search [1] полезная статья о том как ИИ убивает поиск и что мы потеряем в процессе. Я бы переименовал её в The Death of Google потому что главная поисковая монополия пострадает более других. Но ещё не время пессимистичных прогнозов
- The Emergent Landscape of Data Commons: A Brief Survey and Comparison of Existing Initiatives [2] статья о инициативах публикации данных как общественного блага. Тема актуальная и про частные инициативы, и про государственные и про технологические НКО. Довольно близко к инициативам по общественной цифровой инфраструктуре (Digital Public Infrastructure, DPI)
- Congress should designate an entity to oversee data security, GAO says [3] в США Счетная палата (GAO) рекомендовала Конгрессу выбрать федеральное агентство и дать ему полномочия по защите данных. Сейчас такого агентства нет и это создаёт дополнительные риски, о чём GAO и пишут в своём докладе [4]
- OECD Digital Economy Outlook 2024 (Volume 2) [5] свежий доклад ОЭСР по цифровой экономике. Про данные мало, про многое другое много. Явные акценты на особенностях медиапотребления и на цифровой безопасности.
- How to evaluate statistical claims [6] хороший лонгрид о том как читать статистику

Ссылки:
[1] https://archive.is/ZSzAP
[2] https://medium.com/data-stewards-network/the-emergent-landscape-of-data-commons-a-brief-survey-and-comparison-of-existing-initiatives-abab7bbc4fe1
[3] https://fedscoop.com/congress-data-security-civil-rights-liberties-gao-report/
[4] https://www.gao.gov/assets/gao-25-106057.pdf
[5] https://www.oecd.org/en/publications/oecd-digital-economy-outlook-2024-volume-2_3adf705b-en.html
[6] https://seantrott.substack.com/p/how-to-evaluate-statistical-claims

#data #ai #privacy #statistics #readings
В рубрике полезного чтения про данные, технологии и не только:
- Dismantling ELT: The Case for Graphs, Not Silos [1] размышления автора о том что такое ELT с точки зрения данных которые являются графом. Он там постоянно ссылается на закон Конвея «организации проектируют системы, которые копируют структуру коммуникаций в этой организации» и про необходимость изменения отношения к тому как данные обрабатываются.
- 7 Databases in 7 Weeks for 2025 [2] автор рассказывает о том почему стоит изучить такие базы данных как PostgreSQL, SQlite, DuckDB, Clickhouse, FoundationDB, TigerBeetle и CockroachDB. Подборка хорошая, стоит изучить
- reactable-py [3] код для быстрой визуализации датафреймов. Мне он чем то напомнил проект Datasette [4], но очень отдалённо. Удобно тем что хорошо встраивается в веб страницу и может быть полезно в дата сторителлинге.
- Field Boundaries for Agriculture (fiboa) [5] малоизвестный пока что проект по сбору наборов данных и инструментов для создания данных в сельском хозяйстве, конкретно в определении границ участков. Сами данные публикуют в Source Cooperative, каталоге больших геоданных [6]
- Common Operational Datasets [7] [8] [9] общие операционные наборы достоверных данных необходимые для принятия решений. Термин UN OCHA определяющий ключевые данные необходимые для противодействия стихийным бедствиям. Чем то напоминает концепцию high-value datasets используемую в Евросоюзе.

Ссылки:
[1] https://jack-vanlightly.com/blog/2024/11/26/dismantling-elt-the-case-for-graphs-not-silos
[2] https://matt.blwt.io/post/7-databases-in-7-weeks-for-2025/
[3] https://machow.github.io/reactable-py/get-started/index.html
[4] https://datasette.io
[5] https://github.com/fiboa
[6] https://source.coop/
[7] https://cod.unocha.org
[8] https://data.humdata.org/event/cod/
[9] https://humanitarian.atlassian.net/wiki/spaces/imtoolbox/pages/42045911/Common+Operational+Datasets+CODs

#opendata #opensource #readings #dataviz #dataframes
Свежий интересный доклад The UK government as a data provider for AI [1] о том используют ли LLM госсайты Великобритании и официальные государственные данные. Результаты таковы что контент с официальных сайтов активно используется, а датасеты из data.gov.uk практически нет. Результат совершенно неудивительный поскольку основные LLM тренировали на бесконечном количестве текстов собранных с помощью Common Crawl или своими ботам или из поискового индекса, как у Google и Microsoft. В общем-то не на данных, строго говоря. Причин этому много, я бы обозначил основной причиной что датасеты для ИИ в государстве никто не готовил и датасеты с большим числом текстов также.

Рекомендации в докладе вполне разумные и включают:
1. Публиковать данные более пригодными для ИИ (AI ready)
2. Сделать ревизию доступности контента для AI краулеров.
3. Создать национальную дата библиотеку для AI

Последний пункт это про создание специализированного каталога данных высокого качества. О таких проектах давно и много где говорят, вероятность появления его в Великобритании растёт, это не первый доклад где я о таком читаю.

Текст доклада опубликован Институтом открытых данных (Великобритания) и у них же в этом году выходило ещё одно исследование From co-generated data to generative AI [2] о том как устроено обучение ИИ на данных краудсорсинга и соцсетей. Ничего революционного, но чтение полезное.

Ссылки:
[1] https://theodi.cdn.ngo/media/documents/The_UK_government_as_a_data_provider_for_AI.pdf
[2] https://wp.oecd.ai/app/uploads/2024/12/From-co-generated-data-to-generative-AI-1.pdf

#opendata #datasets #ai #uk #readings
Полезные ссылки про данные, технологии и не только:
- The DuckDB Avro Extension [1] новое расширение для DuckDB для поддержки формата файлов Apache Avro. Не то чтобы Avro часто встречается в дикой природе, но во многих корпоративных стеках данных он есть и хорошо что к нему есть расширение. Заодно полезное чтение про внутреннее устройство и специфику этого формата.
- Prototype Fund: a successful story of project replication within the Open Knowledge Network [2] в блоке Open Knowledge Foundation видео с рассказом про Prototype Fund в Германии и Швейцарии. Это специальный фонд для поддержки проектов с открытым кодом, про открытые данные и вообще про технологические аспекты открытости (например, стандарты) в контексте цифровой общей инфраструктуры. Иначе говоря поддержка открытых проектов создаваемых для общественного блага. Жаль этот опыт трудновоспроизводим.
- The History of the Decline and Fall of In-Memory Database Systems [3] приятный текст про "взлет и падение" баз данных работавших только в памяти и о том почему почти все СУБД вернулись к модели постоянного хранения. Спойлер: потому что цены гигабайт на SSD падают быстрее чем цены за гигабайт RAM
- Researchers achieve 96% accuracy in detecting phishing emails with open-source AI [4] вот полезное применение LLM, ловить фишинговые письма. Правда, сдаётся мне что есть способы и попроще, но и этот весьма неплох. Причём 95% точности достигается довольно легковесной моделью, а 96% уже с существенно большими требованиями
- An Open Source Python Library for Anonymizing Sensitive Data [5] статья об анонимизации данных и открытой библиотеке авторов о том как ей пользоваться.

Ссылки:
[1] https://duckdb.org/2024/12/09/duckdb-avro-extension
[2] https://blog.okfn.org/2024/12/05/prototype-fund-a-successful-story-of-project-replication-within-the-open-knowledge-network/
[3] https://cedardb.com/blog/in_memory_dbms/
[4] https://the-decoder.com/researchers-achieve-96-accuracy-in-detecting-phishing-emails-with-open-source-ai/
[5] https://www.nature.com/articles/s41597-024-04019-z

#opensource #ai #rdbms #readings