Ivan Begtin
7.99K subscribers
1.87K photos
3 videos
101 files
4.58K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
Download Telegram
Подборка полезных инструментов для работы с данными и не только:
- GROBID [1] библиотека и набор утилит для разбора PDF научных статей. Извлекает таблицы, ссылки, заголовки, цитаты, даты и именованные сущности. Используется внутри проекта Semantic Scholar. Открытый код под Apache 2.
- sqleton [2] универсальная библиотека для Python для доступа к разным SQL СУБД. Альтернатива SQLAlchemy, но выглядит как более простая в использовании
- reladiff [3] библиотека для Python для сравнения больших таблиц, сравнительно легко её можно доработать для сравнения больших датасетов
- Daft [4] распределенная библиотека для датафреймов на Rust и Python. Внутри Apache Arrow и язык запросов в виде функций для Python

Ссылки:
[1] https://github.com/allenai/grobid
[2] https://github.com/erezsh/sqeleton
[3] https://github.com/erezsh/reladiff
[4] https://github.com/Eventual-Inc/Daft

#opensource #datatools #data #pdf #sql #dataframes
Оказывается вышел пре-релиз версии 6.0 библиотеки Plotly для визуализации данных [1] самое интересное там это то что они перешли на библиотеку Narwhals [2] которая позволяет работать с условно любой библиотекой для датафреймов и сохранять совместимость с pandas. Например, это такие библиотеки как: cuDF, Modin, pandas, Polars, PyArrow

Собственно и автор Plotly пишет про то что для не-pandas датафреймов всё ускоряется в 2-3 раза [3].

По всем параметрам хорошая штука, надо использовать на практике.

Ссылки:
[1] https://github.com/plotly/plotly.py/releases/tag/v6.0.0rc0
[2] https://github.com/narwhals-dev/narwhals
[3] https://www.linkedin.com/posts/marcogorelli_plotly-60-%F0%9D%90%A9%F0%9D%90%AB%F0%9D%90%9E%F0%9D%90%AB%F0%9D%90%9E%F0%9D%90%A5%F0%9D%90%9E%F0%9D%90%9A%F0%9D%90%AC%F0%9D%90%9E-is-out-activity-7267885615096991744-2ORl?utm_source=share&utm_medium=member_desktop

#opensource #dataviz #dataframes
В рубрике полезного чтения про данные, технологии и не только:
- Dismantling ELT: The Case for Graphs, Not Silos [1] размышления автора о том что такое ELT с точки зрения данных которые являются графом. Он там постоянно ссылается на закон Конвея «организации проектируют системы, которые копируют структуру коммуникаций в этой организации» и про необходимость изменения отношения к тому как данные обрабатываются.
- 7 Databases in 7 Weeks for 2025 [2] автор рассказывает о том почему стоит изучить такие базы данных как PostgreSQL, SQlite, DuckDB, Clickhouse, FoundationDB, TigerBeetle и CockroachDB. Подборка хорошая, стоит изучить
- reactable-py [3] код для быстрой визуализации датафреймов. Мне он чем то напомнил проект Datasette [4], но очень отдалённо. Удобно тем что хорошо встраивается в веб страницу и может быть полезно в дата сторителлинге.
- Field Boundaries for Agriculture (fiboa) [5] малоизвестный пока что проект по сбору наборов данных и инструментов для создания данных в сельском хозяйстве, конкретно в определении границ участков. Сами данные публикуют в Source Cooperative, каталоге больших геоданных [6]
- Common Operational Datasets [7] [8] [9] общие операционные наборы достоверных данных необходимые для принятия решений. Термин UN OCHA определяющий ключевые данные необходимые для противодействия стихийным бедствиям. Чем то напоминает концепцию high-value datasets используемую в Евросоюзе.

Ссылки:
[1] https://jack-vanlightly.com/blog/2024/11/26/dismantling-elt-the-case-for-graphs-not-silos
[2] https://matt.blwt.io/post/7-databases-in-7-weeks-for-2025/
[3] https://machow.github.io/reactable-py/get-started/index.html
[4] https://datasette.io
[5] https://github.com/fiboa
[6] https://source.coop/
[7] https://cod.unocha.org
[8] https://data.humdata.org/event/cod/
[9] https://humanitarian.atlassian.net/wiki/spaces/imtoolbox/pages/42045911/Common+Operational+Datasets+CODs

#opendata #opensource #readings #dataviz #dataframes