❇️ گروه لینکداین
“Ai & BigData"
https://www.linkedin.com/groups/8721739/
❇️ گروه تلگرام برای پرسش و پاسش و اشتراک گذاری مطاالب
https://t.iss.one/ml_in_science
“Ai & BigData"
https://www.linkedin.com/groups/8721739/
❇️ گروه تلگرام برای پرسش و پاسش و اشتراک گذاری مطاالب
https://t.iss.one/ml_in_science
Forwarded from AI in Science & Technology
❇️ Ai / ML / DL Huge Data-Sets Resources ❇️
💠 Google Dataset Search: https://toolbox.google.com/datasetsearch
💠 KD Nuggets: https://www.kdnuggets.com/datasets/index.html
💠 UCI: https://archive.ics.uci.edu/ml/index.php
💠 Kaggle: https://www.kaggle.com/datasets?sortBy=relevance&group=public&search=Retail+&page=1&pageSize=20&size=all&filetype=all&license=all
💠 Facebook: https://bigdataenthusiast.wordpress.com/2016/03/19/mining-facebook-data-using-r-facebook-api/
💠 https://www.analyticsvidhya.com/blog/2016/11/25-websites-to-find-datasets-for-data-science-projects/
💠 https://www.unb.ca/cic/datasets/index.html
💠 https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown/?fbclid=IwAR17lpDNxDShh4wiAkHGUC3q9CDc-UPVkQNL2xJNPlcxXcsHxPDj7c402V4
💠 https://ckan.publishing.service.gov.uk/dataset
💠 https://www.springboard.com/blog/free-public-data-sets-data-science-project/
💠 https://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/
💠 https://www.philippe-fournier-viger.com/spmf/datasets.php
💠 https://www.dunnhumby.com/sourcefiles
💠 https://bigdata-madesimple.com/70-websites-to-get-large-dat…/
💠 https://guides.emich.edu/data/free-data
💠 https://community.tableau.com/docs/DOC-1236
💠 https://fyi.extension.wisc.edu/downtown-market-analysis/understanding-the-market/demographics-and-lifestyle-analysis/
💠 https://www.dunnhumby.com/sourcefiles
💠 https://tech.instacart.com/3-million-instacart-orders-open-sourced-d40d29ead6f2
Computer Science Project ideas for Students:
💠 https://nevonprojects.com/year-projects-for-computer-engineering/
💠 Google Dataset Search: https://toolbox.google.com/datasetsearch
💠 KD Nuggets: https://www.kdnuggets.com/datasets/index.html
💠 UCI: https://archive.ics.uci.edu/ml/index.php
💠 Kaggle: https://www.kaggle.com/datasets?sortBy=relevance&group=public&search=Retail+&page=1&pageSize=20&size=all&filetype=all&license=all
💠 Facebook: https://bigdataenthusiast.wordpress.com/2016/03/19/mining-facebook-data-using-r-facebook-api/
💠 https://www.analyticsvidhya.com/blog/2016/11/25-websites-to-find-datasets-for-data-science-projects/
💠 https://www.unb.ca/cic/datasets/index.html
💠 https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown/?fbclid=IwAR17lpDNxDShh4wiAkHGUC3q9CDc-UPVkQNL2xJNPlcxXcsHxPDj7c402V4
💠 https://ckan.publishing.service.gov.uk/dataset
💠 https://www.springboard.com/blog/free-public-data-sets-data-science-project/
💠 https://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/
💠 https://www.philippe-fournier-viger.com/spmf/datasets.php
💠 https://www.dunnhumby.com/sourcefiles
💠 https://bigdata-madesimple.com/70-websites-to-get-large-dat…/
💠 https://guides.emich.edu/data/free-data
💠 https://community.tableau.com/docs/DOC-1236
💠 https://fyi.extension.wisc.edu/downtown-market-analysis/understanding-the-market/demographics-and-lifestyle-analysis/
💠 https://www.dunnhumby.com/sourcefiles
💠 https://tech.instacart.com/3-million-instacart-orders-open-sourced-d40d29ead6f2
Computer Science Project ideas for Students:
💠 https://nevonprojects.com/year-projects-for-computer-engineering/
KDnuggets
Datasets for Data Science, Machine Learning, AI & Analytics - KDnuggets
KDnuggets subscribers now have access to the WorldData.AI Partners Plan at no cost! Check out the world’s largest external curated data platform, integrating data from all leading global sources. Data Repositories Anacode Chinese Web Datastore: A collection…
❇️ tslearn is a Python package that provides machine learning tools for the analysis of time series
https://tslearn.readthedocs.io/en/stable/index.html
https://tslearn.readthedocs.io/en/stable/index.html
AI in Science & Technology pinned «شرکت داده پردازی نیک آفرین جهت تکمیل تیم فنی دپارتمان هوش مصنوعی خود در شهر تهران به دنبال جذب تعدادی نیرو به صورت پاره وقت و تمام وقت در حوزه های تخصصی زیر می باشد: 🔶 بینایی ماشین و پردازش تصویر 🔶 پردازش و تحلیل صوت 🔶 پردازش زبان طبیعی 🔶 پردازش سری های…»
❇️ CERN 4th IML Machine Learning Workshop
19-22 October 2020
———————————-
Dear ML enthusiasts,
The 4th annual Inter-experiment Machine Learning workshop has been rescheduled to take place at CERN 19th-22 October 2020. It will take place in person, if conditions allow it, but remote participation will also be possible.
Please register to
https://indico.cern.ch/event/852553/
The following 4 days structure is anticipated:
• Monday 19th Oct : hands-on tutorials : 1/2 day hls4ml, 1/2 day Graph Neural Networks by Deepmind
• Tuesday 20th Oct : morning : invited talks (confirmed speakers Peter Battaglia (DeepMind), Ulrich Koethe (U Heidelberg), Amir Farbin (UTA), Kazuhiro Terao (SLAC) , afternoon industry session
• Wednesday 21st/Thursday 22nd : contributed talks
Most importantly, we welcome your contributions! They form the heart of the workshop, and so we strongly encourage you to consider presenting your work.
Abstract submission is open now, and will close 4th September.
This includes classification, regression, likelihood-free inference, anomaly detection, network acceleration, knowledge distillation, uncertainty mitigation, fast simulation, semi-supervised learning, or whatever else you may be working on that is related to ML in HEP. This is your opportunity to share the exciting things that you have been working on with the rest of the LHC community and more!
(Please just make sure that you abide by any experimental privacy constraints. In case you work on one of the four main LHC collaborations and are unsure of what this means, please contact us! We can help you sort it out.)
Best regards,
The IML coordinators
PS : Please do not hesitate to forward this announcement to relevant local/national/institutional mailing lists
Gian Michele Innocenti ALICE
David Rousseau ATLAS
Loukas Gouskos -> Pietro Vischia CMS
TBA LHCb
Lorenzo Moneta CERN-SFT
Riccardo Torre CERN-TH
Andrea Wulzer CERN-TH
19-22 October 2020
———————————-
Dear ML enthusiasts,
The 4th annual Inter-experiment Machine Learning workshop has been rescheduled to take place at CERN 19th-22 October 2020. It will take place in person, if conditions allow it, but remote participation will also be possible.
Please register to
https://indico.cern.ch/event/852553/
The following 4 days structure is anticipated:
• Monday 19th Oct : hands-on tutorials : 1/2 day hls4ml, 1/2 day Graph Neural Networks by Deepmind
• Tuesday 20th Oct : morning : invited talks (confirmed speakers Peter Battaglia (DeepMind), Ulrich Koethe (U Heidelberg), Amir Farbin (UTA), Kazuhiro Terao (SLAC) , afternoon industry session
• Wednesday 21st/Thursday 22nd : contributed talks
Most importantly, we welcome your contributions! They form the heart of the workshop, and so we strongly encourage you to consider presenting your work.
Abstract submission is open now, and will close 4th September.
This includes classification, regression, likelihood-free inference, anomaly detection, network acceleration, knowledge distillation, uncertainty mitigation, fast simulation, semi-supervised learning, or whatever else you may be working on that is related to ML in HEP. This is your opportunity to share the exciting things that you have been working on with the rest of the LHC community and more!
(Please just make sure that you abide by any experimental privacy constraints. In case you work on one of the four main LHC collaborations and are unsure of what this means, please contact us! We can help you sort it out.)
Best regards,
The IML coordinators
PS : Please do not hesitate to forward this announcement to relevant local/national/institutional mailing lists
Gian Michele Innocenti ALICE
David Rousseau ATLAS
Loukas Gouskos -> Pietro Vischia CMS
TBA LHCb
Lorenzo Moneta CERN-SFT
Riccardo Torre CERN-TH
Andrea Wulzer CERN-TH
Indico
4th Inter-experiment Machine Learning Workshop
The event will take place remotely. Please make sure to be registered to [email protected] CERN egroup, to be informed about further developments. This is the fourth annual workshop of the LPCC inter-experimental machine learning working…
❇️ *** Discussion title: Machine Learning
Dear Colleagues,
in the graduate school at the RWTH Aachen University, the Research
Training Group (RTG): Physics of the Heaviest Particles at the LHC
https://www.rwth-aachen.de/rtg2497/
recent job openings for several PhD positions have been published in:
https://labs.inspirehep.net/jobs/1759310
Applications have to be sent to
https://academicjobsonline.org/ajo/jobs/16509 until July 31st, 2020
In particular we are looking for candidates interested in the topic:
“Search for dark matter with machine learning in leptonic channels at
the LHC”
A master in Physics according to the Bologna guidelines, profound
experience in analysis and initial knowledge in machine learning are
prerequisites to perform the PhD.
Please forward this announcement to possible candidates.
Thank you in advance,
Kerstin Borras
(DESY and RWTH Aachen University)
Dear Colleagues,
in the graduate school at the RWTH Aachen University, the Research
Training Group (RTG): Physics of the Heaviest Particles at the LHC
https://www.rwth-aachen.de/rtg2497/
recent job openings for several PhD positions have been published in:
https://labs.inspirehep.net/jobs/1759310
Applications have to be sent to
https://academicjobsonline.org/ajo/jobs/16509 until July 31st, 2020
In particular we are looking for candidates interested in the topic:
“Search for dark matter with machine learning in leptonic channels at
the LHC”
A master in Physics according to the Bologna guidelines, profound
experience in analysis and initial knowledge in machine learning are
prerequisites to perform the PhD.
Please forward this announcement to possible candidates.
Thank you in advance,
Kerstin Borras
(DESY and RWTH Aachen University)
RWTH AACHEN UNIVERSITY
Research Training Group: Physics of the Heaviest Particles at the LHC
Welcome to the website of the DFG Research Training Group "Physics of the Heaviest Particles at the LHC".
LSTM Time-Series Forecasting: Predicting Stock Prices Using An LSTM Model
https://towardsdatascience.com/lstm-time-series-forecasting-predicting-stock-prices-using-an-lstm-model-6223e9644a2f
https://towardsdatascience.com/lstm-time-series-forecasting-predicting-stock-prices-using-an-lstm-model-6223e9644a2f
Medium
Time-Series Forecasting: Predicting Stock Prices Using An LSTM Model
In this post I show you how to predict stock prices using a forecasting LSTM model
Dear All,
The University of Geneva Particle Physics and Data Science Departments invite applications for
Doctoral Assistants and postdocs
to work on an interdisciplinary project to provide HEP and solar astronomy with robust deep density machine-learning (ML) tools with focus on predictive, generative and anomaly detection models, with the ultimate objective to maximise the LHC’s sensitivity to discover physics beyond the Standard Model, as well as to optimise solar flare prediction.
The project provides funding for a total of 12 positions composed of PhD students and postdocs for 4 years.
The successful candidates have the opportunity to be part of and shape this interdisciplinary project spanning all the way from the development of theoretical ML foundations to their practical applications and generalisation in real-world science questions.
For application details see:
https://inspirehep.net/jobs/1806673 (for postdoc applications)
https://inspirehep.net/jobs/1806674 (for PhD applications)
Applications should be received by August 17 2020 and the position is expected to start by January 2021 (possibly earlier if requested). For further information please contact [email protected].
Best,
Tobias
The University of Geneva Particle Physics and Data Science Departments invite applications for
Doctoral Assistants and postdocs
to work on an interdisciplinary project to provide HEP and solar astronomy with robust deep density machine-learning (ML) tools with focus on predictive, generative and anomaly detection models, with the ultimate objective to maximise the LHC’s sensitivity to discover physics beyond the Standard Model, as well as to optimise solar flare prediction.
The project provides funding for a total of 12 positions composed of PhD students and postdocs for 4 years.
The successful candidates have the opportunity to be part of and shape this interdisciplinary project spanning all the way from the development of theoretical ML foundations to their practical applications and generalisation in real-world science questions.
For application details see:
https://inspirehep.net/jobs/1806673 (for postdoc applications)
https://inspirehep.net/jobs/1806674 (for PhD applications)
Applications should be received by August 17 2020 and the position is expected to start by January 2021 (possibly earlier if requested). For further information please contact [email protected].
Best,
Tobias
inspirehep.net
Machine Learning in ATLAS - INSPIRE
The University of Geneva Particle Physics and Computer Science Departments invite applications forPostdocs and doctoral assistantsto work on an interdis...
❇️ Text Summary For Wikipedia Articles With Simple Natural Language Processing Concept In Python
https://www.taheramlaki.com/blog/articles/text-summary-nlp/
https://www.taheramlaki.com/blog/articles/text-summary-nlp/
A list of educational resources curated by DeepMind Scientists and
Engineers for students interested in learning more about artifical intelligence,
machine learning and other related topics.
https://storage.googleapis.com/deepmind-media/research/New_AtHomeWithAI%20resources.pdf
Engineers for students interested in learning more about artifical intelligence,
machine learning and other related topics.
https://storage.googleapis.com/deepmind-media/research/New_AtHomeWithAI%20resources.pdf
💠 Remote NLP Engineer
Company: Memora Health
Place: Anywhere
Salary: $100,000 - $180,000 / yr
❇️ https://angel.co/company/memora-health/jobs/943666-nlp-engineer
Company: Memora Health
Place: Anywhere
Salary: $100,000 - $180,000 / yr
❇️ https://angel.co/company/memora-health/jobs/943666-nlp-engineer
❇️ Inverted CERN School of Computing 2020 - ONLINE EVENT - Sept. 28 to Oct. 2
Dear All,
The 13th edition of the Inverted CERN School of Computing (iCSC 2020), will take place as an online event from September 28 to October 2, 2020 (in the afternoons).
An excellent programme is planned, consisting of lectures and hands-on exercises selected from a range of proposals by past CSC students, and focusing on the following domains:
• Programming Paradigms and Design Patterns
• Heterogeneous Programming with OpenCL
• Computational Fluid Dynamics
• Reconstruction and Imaging
• Modern C++ features
• Big Data processing with SQL
Attendance is free and open to anyone. Connection details (link to the videoconferencing room) will be sent by e-mail to registered participants - therefore if you are interested, please register. You are not obliged to attend the full event - indeed you can simply attend the classes that interest you the most!
Certificate of attendance will be provided to those who attend at least 80% of the lectures, and take a short evaluation test after the school end.
More details, including the timetable: https://indico.cern.ch/e/iCSC-2020.
Please feel free to forward this message to any of your colleagues who might be interested. Thank you!
Kind regards,
The CSC Team
CERN School of Computing
https://csc.web.cern.ch/
Dear All,
The 13th edition of the Inverted CERN School of Computing (iCSC 2020), will take place as an online event from September 28 to October 2, 2020 (in the afternoons).
An excellent programme is planned, consisting of lectures and hands-on exercises selected from a range of proposals by past CSC students, and focusing on the following domains:
• Programming Paradigms and Design Patterns
• Heterogeneous Programming with OpenCL
• Computational Fluid Dynamics
• Reconstruction and Imaging
• Modern C++ features
• Big Data processing with SQL
Attendance is free and open to anyone. Connection details (link to the videoconferencing room) will be sent by e-mail to registered participants - therefore if you are interested, please register. You are not obliged to attend the full event - indeed you can simply attend the classes that interest you the most!
Certificate of attendance will be provided to those who attend at least 80% of the lectures, and take a short evaluation test after the school end.
More details, including the timetable: https://indico.cern.ch/e/iCSC-2020.
Please feel free to forward this message to any of your colleagues who might be interested. Thank you!
Kind regards,
The CSC Team
CERN School of Computing
https://csc.web.cern.ch/
Indico
Inverted CERN School of Computing 2020
The 13th Inverted CERN School of Computing (iCSC 2020) consists of classes (lectures, exercises, demonstration and consultations) given by former CERN School of Computing students. The Inverted School provides a platform to share their knowledge by turning…