This media is not supported in your browser
VIEW IN TELEGRAM
💠 https://www.matthewtancik.com/nerf
❇️ We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views.
❇️ We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views.
❇️ Python codes implementing algorithms described in Bishop's book "Pattern Recognition and Machine Learning"
https://github.com/ctgk/PRML
https://github.com/ctgk/PRML
GitHub
GitHub - ctgk/PRML: PRML algorithms implemented in Python
PRML algorithms implemented in Python. Contribute to ctgk/PRML development by creating an account on GitHub.
شرکت داده پردازی نیک آفرین جهت تکمیل تیم فنی دپارتمان هوش مصنوعی خود در شهر تهران به دنبال جذب تعدادی نیرو به صورت پاره وقت و تمام وقت در حوزه های تخصصی زیر می باشد:
🔶 بینایی ماشین و پردازش تصویر
🔶 پردازش و تحلیل صوت
🔶 پردازش زبان طبیعی
🔶 پردازش سری های زمانی
❇️ مهارت های اختصاصی
• تسلط به زبان های برنامه نویسی و کتابخانه های رایج یادگیری ماشین/یادگیری عمیق
• آشنایی کافی با زبان انگلیسی برای استفاده از منابع انگلیسی
• تجربه کار کردن با GitHub (مزیت محسوب می شود)
• تجربه کار کردن با سیستم عامل لینوکس و اسکریپت نویسی (مزیت محسوب می شود)
• توانمندی در مستند سازی پروژه (مزیت محسوب می شود)
❇️ ویژگی های فردی
• دارای روحیه تیمی و اخلاق حرفه ای کاری
• با انگیزه و علاقه مند به حل مسئله و ارائه راه حل های جدید
• مسئولیت پذیر، پیگیر و منظم در کارها
• دارای روحیه یادگیری بالا و جستجو در اینترنت
❇️ معرفی شرکت
دپارتمان هوش مصنوعی شرکت داده پردازی نیک آفرین با هدف اولیه پیاده سازی و توسعه سامانه های امنیتی-نظارتی دارای پردازش تصویر مبتنی بر هوش مصنوعی فعالیت خود را آغاز نموده و در حال گسترش فعالیت های خود به دیگر حوزه های صنعتی و تجاری است. پروژه های کنونی این دپارتمان در حوزه های حفاظت و امنیت، حمل و نقل و زیست فناوری می باشد.
☯️ متقاضیان می توانند رزومه کاری خود را به صورت فایل pdf به آدرس ایمیل [email protected] با عنوان "همکاری" ارسال نمایند.
🔶 بینایی ماشین و پردازش تصویر
🔶 پردازش و تحلیل صوت
🔶 پردازش زبان طبیعی
🔶 پردازش سری های زمانی
❇️ مهارت های اختصاصی
• تسلط به زبان های برنامه نویسی و کتابخانه های رایج یادگیری ماشین/یادگیری عمیق
• آشنایی کافی با زبان انگلیسی برای استفاده از منابع انگلیسی
• تجربه کار کردن با GitHub (مزیت محسوب می شود)
• تجربه کار کردن با سیستم عامل لینوکس و اسکریپت نویسی (مزیت محسوب می شود)
• توانمندی در مستند سازی پروژه (مزیت محسوب می شود)
❇️ ویژگی های فردی
• دارای روحیه تیمی و اخلاق حرفه ای کاری
• با انگیزه و علاقه مند به حل مسئله و ارائه راه حل های جدید
• مسئولیت پذیر، پیگیر و منظم در کارها
• دارای روحیه یادگیری بالا و جستجو در اینترنت
❇️ معرفی شرکت
دپارتمان هوش مصنوعی شرکت داده پردازی نیک آفرین با هدف اولیه پیاده سازی و توسعه سامانه های امنیتی-نظارتی دارای پردازش تصویر مبتنی بر هوش مصنوعی فعالیت خود را آغاز نموده و در حال گسترش فعالیت های خود به دیگر حوزه های صنعتی و تجاری است. پروژه های کنونی این دپارتمان در حوزه های حفاظت و امنیت، حمل و نقل و زیست فناوری می باشد.
☯️ متقاضیان می توانند رزومه کاری خود را به صورت فایل pdf به آدرس ایمیل [email protected] با عنوان "همکاری" ارسال نمایند.
❇️ گروه لینکداین
“Ai & BigData"
https://www.linkedin.com/groups/8721739/
❇️ گروه تلگرام برای پرسش و پاسش و اشتراک گذاری مطاالب
https://t.iss.one/ml_in_science
“Ai & BigData"
https://www.linkedin.com/groups/8721739/
❇️ گروه تلگرام برای پرسش و پاسش و اشتراک گذاری مطاالب
https://t.iss.one/ml_in_science
Forwarded from AI in Science & Technology
❇️ Ai / ML / DL Huge Data-Sets Resources ❇️
💠 Google Dataset Search: https://toolbox.google.com/datasetsearch
💠 KD Nuggets: https://www.kdnuggets.com/datasets/index.html
💠 UCI: https://archive.ics.uci.edu/ml/index.php
💠 Kaggle: https://www.kaggle.com/datasets?sortBy=relevance&group=public&search=Retail+&page=1&pageSize=20&size=all&filetype=all&license=all
💠 Facebook: https://bigdataenthusiast.wordpress.com/2016/03/19/mining-facebook-data-using-r-facebook-api/
💠 https://www.analyticsvidhya.com/blog/2016/11/25-websites-to-find-datasets-for-data-science-projects/
💠 https://www.unb.ca/cic/datasets/index.html
💠 https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown/?fbclid=IwAR17lpDNxDShh4wiAkHGUC3q9CDc-UPVkQNL2xJNPlcxXcsHxPDj7c402V4
💠 https://ckan.publishing.service.gov.uk/dataset
💠 https://www.springboard.com/blog/free-public-data-sets-data-science-project/
💠 https://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/
💠 https://www.philippe-fournier-viger.com/spmf/datasets.php
💠 https://www.dunnhumby.com/sourcefiles
💠 https://bigdata-madesimple.com/70-websites-to-get-large-dat…/
💠 https://guides.emich.edu/data/free-data
💠 https://community.tableau.com/docs/DOC-1236
💠 https://fyi.extension.wisc.edu/downtown-market-analysis/understanding-the-market/demographics-and-lifestyle-analysis/
💠 https://www.dunnhumby.com/sourcefiles
💠 https://tech.instacart.com/3-million-instacart-orders-open-sourced-d40d29ead6f2
Computer Science Project ideas for Students:
💠 https://nevonprojects.com/year-projects-for-computer-engineering/
💠 Google Dataset Search: https://toolbox.google.com/datasetsearch
💠 KD Nuggets: https://www.kdnuggets.com/datasets/index.html
💠 UCI: https://archive.ics.uci.edu/ml/index.php
💠 Kaggle: https://www.kaggle.com/datasets?sortBy=relevance&group=public&search=Retail+&page=1&pageSize=20&size=all&filetype=all&license=all
💠 Facebook: https://bigdataenthusiast.wordpress.com/2016/03/19/mining-facebook-data-using-r-facebook-api/
💠 https://www.analyticsvidhya.com/blog/2016/11/25-websites-to-find-datasets-for-data-science-projects/
💠 https://www.unb.ca/cic/datasets/index.html
💠 https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown/?fbclid=IwAR17lpDNxDShh4wiAkHGUC3q9CDc-UPVkQNL2xJNPlcxXcsHxPDj7c402V4
💠 https://ckan.publishing.service.gov.uk/dataset
💠 https://www.springboard.com/blog/free-public-data-sets-data-science-project/
💠 https://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/
💠 https://www.philippe-fournier-viger.com/spmf/datasets.php
💠 https://www.dunnhumby.com/sourcefiles
💠 https://bigdata-madesimple.com/70-websites-to-get-large-dat…/
💠 https://guides.emich.edu/data/free-data
💠 https://community.tableau.com/docs/DOC-1236
💠 https://fyi.extension.wisc.edu/downtown-market-analysis/understanding-the-market/demographics-and-lifestyle-analysis/
💠 https://www.dunnhumby.com/sourcefiles
💠 https://tech.instacart.com/3-million-instacart-orders-open-sourced-d40d29ead6f2
Computer Science Project ideas for Students:
💠 https://nevonprojects.com/year-projects-for-computer-engineering/
KDnuggets
Datasets for Data Science, Machine Learning, AI & Analytics - KDnuggets
KDnuggets subscribers now have access to the WorldData.AI Partners Plan at no cost! Check out the world’s largest external curated data platform, integrating data from all leading global sources. Data Repositories Anacode Chinese Web Datastore: A collection…
❇️ tslearn is a Python package that provides machine learning tools for the analysis of time series
https://tslearn.readthedocs.io/en/stable/index.html
https://tslearn.readthedocs.io/en/stable/index.html
AI in Science & Technology pinned «شرکت داده پردازی نیک آفرین جهت تکمیل تیم فنی دپارتمان هوش مصنوعی خود در شهر تهران به دنبال جذب تعدادی نیرو به صورت پاره وقت و تمام وقت در حوزه های تخصصی زیر می باشد: 🔶 بینایی ماشین و پردازش تصویر 🔶 پردازش و تحلیل صوت 🔶 پردازش زبان طبیعی 🔶 پردازش سری های…»
❇️ CERN 4th IML Machine Learning Workshop
19-22 October 2020
———————————-
Dear ML enthusiasts,
The 4th annual Inter-experiment Machine Learning workshop has been rescheduled to take place at CERN 19th-22 October 2020. It will take place in person, if conditions allow it, but remote participation will also be possible.
Please register to
https://indico.cern.ch/event/852553/
The following 4 days structure is anticipated:
• Monday 19th Oct : hands-on tutorials : 1/2 day hls4ml, 1/2 day Graph Neural Networks by Deepmind
• Tuesday 20th Oct : morning : invited talks (confirmed speakers Peter Battaglia (DeepMind), Ulrich Koethe (U Heidelberg), Amir Farbin (UTA), Kazuhiro Terao (SLAC) , afternoon industry session
• Wednesday 21st/Thursday 22nd : contributed talks
Most importantly, we welcome your contributions! They form the heart of the workshop, and so we strongly encourage you to consider presenting your work.
Abstract submission is open now, and will close 4th September.
This includes classification, regression, likelihood-free inference, anomaly detection, network acceleration, knowledge distillation, uncertainty mitigation, fast simulation, semi-supervised learning, or whatever else you may be working on that is related to ML in HEP. This is your opportunity to share the exciting things that you have been working on with the rest of the LHC community and more!
(Please just make sure that you abide by any experimental privacy constraints. In case you work on one of the four main LHC collaborations and are unsure of what this means, please contact us! We can help you sort it out.)
Best regards,
The IML coordinators
PS : Please do not hesitate to forward this announcement to relevant local/national/institutional mailing lists
Gian Michele Innocenti ALICE
David Rousseau ATLAS
Loukas Gouskos -> Pietro Vischia CMS
TBA LHCb
Lorenzo Moneta CERN-SFT
Riccardo Torre CERN-TH
Andrea Wulzer CERN-TH
19-22 October 2020
———————————-
Dear ML enthusiasts,
The 4th annual Inter-experiment Machine Learning workshop has been rescheduled to take place at CERN 19th-22 October 2020. It will take place in person, if conditions allow it, but remote participation will also be possible.
Please register to
https://indico.cern.ch/event/852553/
The following 4 days structure is anticipated:
• Monday 19th Oct : hands-on tutorials : 1/2 day hls4ml, 1/2 day Graph Neural Networks by Deepmind
• Tuesday 20th Oct : morning : invited talks (confirmed speakers Peter Battaglia (DeepMind), Ulrich Koethe (U Heidelberg), Amir Farbin (UTA), Kazuhiro Terao (SLAC) , afternoon industry session
• Wednesday 21st/Thursday 22nd : contributed talks
Most importantly, we welcome your contributions! They form the heart of the workshop, and so we strongly encourage you to consider presenting your work.
Abstract submission is open now, and will close 4th September.
This includes classification, regression, likelihood-free inference, anomaly detection, network acceleration, knowledge distillation, uncertainty mitigation, fast simulation, semi-supervised learning, or whatever else you may be working on that is related to ML in HEP. This is your opportunity to share the exciting things that you have been working on with the rest of the LHC community and more!
(Please just make sure that you abide by any experimental privacy constraints. In case you work on one of the four main LHC collaborations and are unsure of what this means, please contact us! We can help you sort it out.)
Best regards,
The IML coordinators
PS : Please do not hesitate to forward this announcement to relevant local/national/institutional mailing lists
Gian Michele Innocenti ALICE
David Rousseau ATLAS
Loukas Gouskos -> Pietro Vischia CMS
TBA LHCb
Lorenzo Moneta CERN-SFT
Riccardo Torre CERN-TH
Andrea Wulzer CERN-TH
Indico
4th Inter-experiment Machine Learning Workshop
The event will take place remotely. Please make sure to be registered to [email protected] CERN egroup, to be informed about further developments. This is the fourth annual workshop of the LPCC inter-experimental machine learning working…
❇️ *** Discussion title: Machine Learning
Dear Colleagues,
in the graduate school at the RWTH Aachen University, the Research
Training Group (RTG): Physics of the Heaviest Particles at the LHC
https://www.rwth-aachen.de/rtg2497/
recent job openings for several PhD positions have been published in:
https://labs.inspirehep.net/jobs/1759310
Applications have to be sent to
https://academicjobsonline.org/ajo/jobs/16509 until July 31st, 2020
In particular we are looking for candidates interested in the topic:
“Search for dark matter with machine learning in leptonic channels at
the LHC”
A master in Physics according to the Bologna guidelines, profound
experience in analysis and initial knowledge in machine learning are
prerequisites to perform the PhD.
Please forward this announcement to possible candidates.
Thank you in advance,
Kerstin Borras
(DESY and RWTH Aachen University)
Dear Colleagues,
in the graduate school at the RWTH Aachen University, the Research
Training Group (RTG): Physics of the Heaviest Particles at the LHC
https://www.rwth-aachen.de/rtg2497/
recent job openings for several PhD positions have been published in:
https://labs.inspirehep.net/jobs/1759310
Applications have to be sent to
https://academicjobsonline.org/ajo/jobs/16509 until July 31st, 2020
In particular we are looking for candidates interested in the topic:
“Search for dark matter with machine learning in leptonic channels at
the LHC”
A master in Physics according to the Bologna guidelines, profound
experience in analysis and initial knowledge in machine learning are
prerequisites to perform the PhD.
Please forward this announcement to possible candidates.
Thank you in advance,
Kerstin Borras
(DESY and RWTH Aachen University)
RWTH AACHEN UNIVERSITY
Research Training Group: Physics of the Heaviest Particles at the LHC
Welcome to the website of the DFG Research Training Group "Physics of the Heaviest Particles at the LHC".