❇️ کانال "یادگیری ماشین در علم"
♦️آموزش، اخبار، همکاری در پروژه مشترک و آگهی استخدام در زمینه ⬅️ هوش مصنوعی، یادگیری ماشین، علوم عصبی و کلان داده ♦️
☯️ Python - R - Java - Matlab ☯️
xبه ما بپیوندید👇
@ml_in_science
------------
گروه لینکداین مرتبط با کانال "یادگیری ماشین در علم"
❇️ "Ai & BigData" LinkedIn group
join us👇
https://www.linkedin.com/groups/8721739/
♦️آموزش، اخبار، همکاری در پروژه مشترک و آگهی استخدام در زمینه ⬅️ هوش مصنوعی، یادگیری ماشین، علوم عصبی و کلان داده ♦️
☯️ Python - R - Java - Matlab ☯️
xبه ما بپیوندید👇
@ml_in_science
------------
گروه لینکداین مرتبط با کانال "یادگیری ماشین در علم"
❇️ "Ai & BigData" LinkedIn group
join us👇
https://www.linkedin.com/groups/8721739/
💠 Amazon opens its internal machine learning courses to all for free:
🌎 https://aws.amazon.com/training/learning-paths/machine-learning/
🌎 https://aws.amazon.com/training/learning-paths/machine-learning/
Amazon
Machine Learning
Build your machine learning skills with digital training courses, classroom training, and certification for specialized machine learning roles. Learn more!
Forwarded from Deleted Account
Forwarded from Deleted Account
https://youtu.be/M0R12fcTUvs
منظور از محاسبه کوانتومی چیست؟، توسط Seth Lloyd از دانشگاه MIT
منظور از محاسبه کوانتومی چیست؟، توسط Seth Lloyd از دانشگاه MIT
YouTube
Essence of Quantum Computation - Seth Lloyd
Serious Science - https://serious-science.org
Forwarded from Deleted Account
https://youtu.be/SSIww8LBQCs
"الگوریتمهای کوانتومی" توسط Peter Hoyer از دانشگاه کلگری، کانادا
"الگوریتمهای کوانتومی" توسط Peter Hoyer از دانشگاه کلگری، کانادا
YouTube
Peter Høyer - Quantum Algorithms (Part 1) - CSSQI 2012
Peter Høyer, Associate Professor at the University of Calgary, lectures on quantum algorithms. The lecture is the first of two parts, and was filmed at the C...
Forwarded from Deleted Account
https://youtu.be/KTVtMKo3g80
الگوریتمهای کوانتومی برای "دسته بندی" و یادگیری ماشین. ارائه توسط Lordanis Kerenidis از دانشگاه Paris Diderot، فرانسه
الگوریتمهای کوانتومی برای "دسته بندی" و یادگیری ماشین. ارائه توسط Lordanis Kerenidis از دانشگاه Paris Diderot، فرانسه
YouTube
Quantum Algorithms for Classification
Iordanis Kerenidis, Université Paris Diderot
https://simons.berkeley.edu/talks/iordanis-kerenidis-06-14-18
Challenges in Quantum Computation
https://simons.berkeley.edu/talks/iordanis-kerenidis-06-14-18
Challenges in Quantum Computation
Forwarded from mina Zamani
سلام...اگر اهل شنیدن #پادکست هستین و علاوه بر یادگیری ماشین از #عکاسی هم خوشتون میاد یا از دوربین موبایل استفاده میکنین این یه گفتگوی خیلی خیلی عمومی درباره تاثیر هوش مصنوعی بر عکاسی هست.
#podcast_ml
https://overcast.fm/+IlguKviKY
#podcast_ml
https://overcast.fm/+IlguKviKY
overcast.fm
#25 AI in Photography — Histogram | هیستوگرام
آینده هوش مصنوعی و تاثیر آن در صنعت عکاسی گفت و گویی با شکوفه عزیزی، دانشجوی دکترای کامپیوتر
#job_opportunity_ml
#statistical_physics
#machine_learning
#computational_biology
Dear colleague,
We are looking for a post-doc candidate at the crossroad of statistical
physics, machine learning, and computational biology, interested in the
theoretical and applied aspect of data-driven modeling.
Thanks to recent progress in machine learning, machine learning can be used to establish models of complex systems, which remain out of reach with standard first-principle methods. The goal of the post doctoral project will be two-fold:
(1) develop unsupervised machine learning tools and apply statistical
physics methods and concepts to better understand how these methods operate and learn from data. Different unsupervised architectures will be studied and compared, including Boltzmann Machines, Restricted Boltzmann Machines, and (Variational) Autoencoders.
(2) apply these methods to model proteins from sequence data, with special emphasis on the prediction of mutational effects and mutational paths in the trypsin enzyme, in connection with high-throughput experiments by C. Nizak and O. Rivoire at College de France.
The post-doc will be located in the Department of Physics at the Ecole
Normale Superieure in Paris, under the supervision of S. Cocco and R.
Monasson. The duration of the position is of two years. Post-doc
candidates are expected to have solid knowledge in statistical physics,
inference methods and data analysis, and both analytical and computer
programming skills. Moreover he/she should have a deep interest and
possibly a previous experience in computational biology and/or
bioinformatics.
Applications should be sent by email to [email protected] or
[email protected] by January 15, 2018.
Please help us distribute this announcement.
best regards,
Simona Cocco and Rémi Monasson
#statistical_physics
#machine_learning
#computational_biology
Dear colleague,
We are looking for a post-doc candidate at the crossroad of statistical
physics, machine learning, and computational biology, interested in the
theoretical and applied aspect of data-driven modeling.
Thanks to recent progress in machine learning, machine learning can be used to establish models of complex systems, which remain out of reach with standard first-principle methods. The goal of the post doctoral project will be two-fold:
(1) develop unsupervised machine learning tools and apply statistical
physics methods and concepts to better understand how these methods operate and learn from data. Different unsupervised architectures will be studied and compared, including Boltzmann Machines, Restricted Boltzmann Machines, and (Variational) Autoencoders.
(2) apply these methods to model proteins from sequence data, with special emphasis on the prediction of mutational effects and mutational paths in the trypsin enzyme, in connection with high-throughput experiments by C. Nizak and O. Rivoire at College de France.
The post-doc will be located in the Department of Physics at the Ecole
Normale Superieure in Paris, under the supervision of S. Cocco and R.
Monasson. The duration of the position is of two years. Post-doc
candidates are expected to have solid knowledge in statistical physics,
inference methods and data analysis, and both analytical and computer
programming skills. Moreover he/she should have a deep interest and
possibly a previous experience in computational biology and/or
bioinformatics.
Applications should be sent by email to [email protected] or
[email protected] by January 15, 2018.
Please help us distribute this announcement.
best regards,
Simona Cocco and Rémi Monasson