این مقاله محدودیتهای بنیادی مدلهای بازیابی مبتنی بر وکتور امبدینگ را بررسی میکند، بهویژه زمانی که این مدلها با وظایف پیچیدهتر، مانند استدلال یا پیروی از دستورالعملها، روبرو میشوند.
نویسندگان نشان میدهند که تعداد زیرمجموعههای اسناد که یک وکتور امبدینگ میتواند با توجه به ابعاد Embedding بازگرداند، محدود است.
برای اثبات این موضوع، آنها یک مجموعه داده واقعگرایانه و در عین حال ساده به نام LIMIT ایجاد میکنند که مدلهای پیشرفته فعلی نیز در آن شکست میخورند، و تأکید میکنند که این محدودیتهای نظری حتی در تنظیمات عملی نیز وجود دارند.
نتیجهگیری این است که جامعه تحقیقاتی باید به این محدودیتها توجه داشته باشد و روشهای بازیابی جایگزین، مانند مدلهای چند برداری، را برای وظایف پیچیدهتر توسعه دهد.
لینک ویدیو فارسی توضیحات این مقاله : https://youtu.be/rNEl_tBJ5aE?si=Wg5LUPloe6s3noz2
لینک مقاله در آرشیو :
https://arxiv.org/pdf/2508.21038
Please open Telegram to view this post
VIEW IN TELEGRAM
15