Generative AI
2.34K subscribers
140 photos
39 videos
4 files
135 links
@haarrp - по всем вопросам
Download Telegram
🧠 Как снизить самоуверенность LLM-«судей»

Проблема:
Модели, которые сравнивают ответы и выбирают лучший, часто завышают уверенность — 90–100%, при том что реальная точность ниже.

Что проверили:
- 14 моделей, задача — сравнить два ответа и выбрать лучший.
- Метрики уверенности:
1. Самооценка (0–100)
2. Доля голосов «за» в 10 прогонах
3. Внутренняя вероятность выбора A или B

Выяснили, что популярная метрика *Expected Calibration Error* плохо ловит проблемы на крайних значениях уверенности.

Новое решение:
- TH-Score — отдельно считает точность в зоне высокой и низкой уверенности, плюс учитывает, как часто такие случаи встречаются.
- LLM-as-a-Fuser — модель, которая читает решения нескольких «судей» и их короткие комментарии, а потом выдает единый вердикт с уверенностью. Работает лучше, чем простое большинство или взвешенное голосование, потому что учитывает причины выбора.

Результаты:
- Qwen3-235B-A22B как fuser: 86,29% точности, ошибка калибровки — 6,42%
- Mistral-Nemo: точность выросла с 20,29% → 67,43%, ошибка упала с 74,22% → 20,49%

Вывод:
- Высокоуверенные решения можно брать автоматически
- Низкоуверенные — отправлять на пересмотр
- Для стабильных итогов — использовать fuser

📌 Подробнее
2👍2
Forwarded from Machinelearning
📌Tencent Yan: создание AAA-игр в реальном времени с помощью диффузионных моделей.

Команда Yan из Tencent анонсировала одноименный фреймворк для интерактивной генерации видео, который, по сути, является фундаментом для создания целых виртуальных миров в реальном времени. Yan объединяет 3 модуля: симуляцию уровня AAA-игр, мультимодальную генерацию контента и его редактирование на лету.

🟡Первый модуль — Yan-Sim.

Он отвечает за симуляцию с реалистичной физикой и рендерингом в разрешении 1080p при 60 кадрах в секунду. В основе лежит Stable Diffusion, но с рядом модификаций.

Во-первых, был разработан VAE с высокой степенью сжатия и низкой задержкой. Он увеличивает пространственное сжатие с 8 до 32 раз и добавляет временное сжатие в 2 раза, обрабатывая кадры парами.

Во-вторых, для самого процесса диффузии используется каузальное временное внимание, что позволяет генерировать видео кадр за кадром.

Наконец, для ускорения инференса применяется целый набор техник: сокращение шагов шумоподавления до 4 с помощью DDIM-сэмплера, конвейер шумоподавления со скользящим окном, KV-кэширование, структурный прунинг UNet и квантование весов до FP8.

В итоге Yan-Sim выполняет генерацию бесконечного интерактивного видео с низкой задержкой (0.07с), что сопоставимо с реальным геймплеем.

🟡Второй модуль - Yan-Gen.

В нем происходит мультимодальная генерация миров по текстовым и визуальным промптам с помощью двухуровневой системы иерархических описаний.

Глобальное описание определяет статичный мир: топологию, визуальный стиль и освещение, выполняя роль "якоря" для всей генерации.

Локальные описания, генерируемые для коротких видеоклипов, отвечают за динамические события и взаимодействия.

Этот подход позволяет модели смешивать стили и механики из разных доменов. Например, можно задать стиль одной игры, а механику - от другой.

Чтобы добиться интерактивности в реальном времени, готовая модель проходит через дистилляцию, в результате чего получается эффективный генератор, работающий в несколько шагов и выдающий 12-17 FPS на одной NVIDIA H20 или до 30 FPS на четырех.

🟡Третий модуль - Yan-Edit.

Это редактор сгенерированного мира прямо во время взаимодействия с помощью текстовых команд. Ключевая идея здесь - разделение симуляции механики и визуального рендеринга.

Симулятор интерактивной механики, построенный на базе Yan-Sim, работает с картами глубины, сохраняя 3D-структуру объектов, но отбрасывая их визуальное оформление. Это позволяет ему изучать общие законы взаимодействия, зависящие от формы, а не от цвета или текстуры.

Визуальный рендерер, основанный на Yan-Gen и ControlNet, отвечает за раскрашивание этих карт глубины в соответствии со стилевыми промптами. Пользователь может в любой момент ввести два типа команд: структурные (например, "добавить интерактивный объект") и стилевые (например, "изменить цвет объекта").

Пока проект в самом начале своего пути - опубликованы только демо-видео и технический отчет, описывающий создание Yan. Модули системы, в виде отдельных моделей обещают опубликовать в ближайшее время.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1🔥1