Forwarded from Machinelearning
OpenAI планирует создать местную команду, которая будет заниматься продажами, развитием, коммуникациями, лоббированием и укрепить связи с немецкими университетами. По словам Сэма Альтмана, репутация Германии в области технического совершенства и промышленных инноваций сделала ее естественным выбором для расширения OpenAI. Германия - один из ключевых рынков OpenAI , а за последний год количество платных пользователей ChatGPT в Германии увеличилось в три раза.
heise.de
Объединенные Арабские Эмираты и Франция подписали соглашение о строительстве масштабного ИИ-кампуса с ЦОД мощностью в 1 гигаватт. Проект потребует инвестиций в размере от 30 до 50 миллиардов евро и станет крупнейшим объектом такого рода в Европе.
Проект кампуса, подписанный президентом Франции и президентом ОАЭ будет разработан консорциумом французских и эмиратских компаний, с участием инвестиционного фонда MGX. Точное местоположение объекта еще не определено.
france24.com
ИИ AlphaGeometry2, улучшенная версия системы AlphaGeometry, превзошла среднего золотого медалиста в решении задач по геометрии на международном математическом конкурсе. DeepMind утверждает, что их ИИ может решить 84% всех олимпиадных задач по геометрии за последние 25 лет.
AlphaGeometry2 состоит из языковой модели из семейства Gemini и "символьного движка". Модель Gemini помогает символьному движку, который использует математические правила для вывода решений задач, приходить к возможным доказательствам для целевой теоремы. AlphaGeometry2 считает проблему "решенной", когда приходит к доказательству, которое объединяет предположения Gemini с принципами символьного движка. DeepMind создала свои собственные синтетические данные для обучения AlphaGeometry2, сгенерировав более 300 миллионов теорем и доказательств различной сложности.
techcrunch.com
Новая функция Microsoft Edge на базе ИИ работает на компьютерах с Windows. Она способна выявлять и блокировать существующие мошеннические схемы и обнаруживать новые благодаря локальной модели машинного обучения.
Когда обнаруживается мошенничество, Microsoft Edge автоматически выходит из полноэкранного режима, который пытаются навязать вредоносные сайты, останавливает воспроизведение аудио и предупреждает пользователя миниатюрой просматриваемой страницы. После этого пользователь может сообщить о сайте, чтобы его добавили в службу Microsoft Defender SmartScreen.
Функция блокировки теперь доступна в предварительной версии в последней стабильной ветке браузера. Чтобы получить доступ к этой функции, необходимо вручную включить блокировку scareware в настройках конфиденциальности Edge и перезапустить браузер. Модель машинного обучения, используемая для блокировки, работает локально, не сохраняя и не отправляя данные в Microsoft.
theverge.com
Компания разработала систему, способную анализировать мозговую активность человека во время набора текста и определять, какие клавиши он нажимает, основываясь только на мыслях. Система использует магнитно-энцефалографический сканер для сбора сигналов, производимых в коре головного мозга.
Несмотря на то, что система способна определять буквы с точностью до 80%, она далека от коммерческого применения из-за своего размера, стоимости в 2 миллиона долларов и необходимости работы в экранированной комнате. Разработчики рассматривают ее как фундаментальное исследование принципов интеллекта, которое может быть использовано для создания более мощных систем искусственного интеллекта, способных учиться и рассуждать, как люди.
technologyreview.com
🤗 Kokoro
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
#курс #python
freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Исследователи из Оксфордского университета впервые продемонстрировали распределенные квантовые вычисления (DQC) между 2 модулями с захваченными ионами, соединенными оптической сетью. В эксперименте статьи, опубликованной в Nature, ученые использовали квантовую телепортацию для передачи управляемого гейта CZ между модулями с точностью 86%. Это достижение позволяет выполнять сложные квантовые алгоритмы, например алгоритм Гровера, с успешностью 71%.
Распределенная архитектура DQC позволит в будущем создавать крупномасштабные квантовые компьютеры, объединяя несколько модулей через квантовые и классические каналы связи.
independent.co.uk
Anthropic представила Экономический индекс, направленный на изучение влияния ИИ на рынок труда и экономику. Первый отчет основан на анализе миллионов анонимных диалогов с Claude. Согласно ему, ИИ чаще применяется для расширения человеческих возможностей (57%), чем для полной автоматизации задач (43%). Наибольшее внедрение ИИ наблюдается в сферах разработки ПО и написания технических статей, а в низкооплачиваемых и высокооплачиваемых профессиях его использование ограничено. Anthropic открывает доступ к данным индекса для дальнейших исследований.
anthropic.com
Компания активно работает над созданием собственного чипа, чтобы уменьшить зависимость от поставок Nvidia. Дизайн первого поколения чипа будет завершён в ближайшие месяцы, а его производство планируется на базе TSMC с использованием 3-нм технологии.
Команду разработчиков возглавляет Ричард Хо, ранее работавший в Google. Чип предназначен для обучения и запуска моделей ИИ, но изначально будет использоваться в ограниченных масштабах. Массовое производство планируется начать в 2026 году.
reuters.com
Library Innovation Lab (Гарвардский университет) запустила архив данных data.gov на платформе Source Cooperative. Коллекция объемом 16 ТБ включает более 311 000 наборов данных, собранных в 2024 и 2025 годах, и представляет собой полный архив федеральных публичных данных, связанных через data.gov. Архив будет ежедневно обновляться по мере добавления новых данных.
Этот проект является частью инициативы по сохранению важных публичных данных для академических исследований и общественного использования. Также опубликовано открытое ПО для создания подобных репозиториев. Проект поддерживается Filecoin Foundation и Rockefeller Brothers Fund.
lil.law.harvard.edu
Сообщество художников призывают аукционный дом Christie’s отменить продажу произведений искусства, созданных с помощью ИИ, утверждая, что технологии, стоящие за этими работами, совершают "массовую кражу". Аукцион Augmented Intelligence, который Christie’s называет первым крупным аукционом, посвящённым ИИ, включает 20 лотов с ценами от $10 000 до $250 000.
В открытом письме, которое подписало более 3000 человек, говорится, что многие работы созданы с использованием моделей ИИ, обученных на защищённых авторским правом произведениях без разрешения их авторов. Художники обвиняют создателей в эксплуатации их труда для коммерческих продуктов. Christie’s заявляет, что в большинстве случаев ИИ обучался на данных, предоставленных самими художниками.
theguardian.com
#ml #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Google расширила возможности Gemini, внедрив функцию запоминания прошлых разговоров для подписчиков Gemini Advanced через Google One AI Premium. Это обновление позволяет Gemini предоставлять более релевантные ответы. Новая функция доступна на английском языке в веб-версии и мобильном приложении Gemini. Google планирует добавить поддержку других языков, а также для бизнес- и корпоративных клиентов Google Workspace в ближайшие недели.
blog.google
Предложение инженера Google об увеличении частоты таймера ядра Linux с 250 до 1000 Гц вызвало интерес в технологическом сообществе и сервис Phoronix провел A/B-тестирование, чтобы оценить влияние этого изменения. Наиболее заметные улучшения наблюдались в ускорении LLM. В других задачах влияние было минимальным и находилось в пределах погрешности измерений системы. Основная идея Кайса Юсефа заключалась в том, что увеличение частоты таймера приведет к улучшению отзывчивости системы и позволит решить проблемы, связанные с 250 Гц: неточные временные интервалы и задержки в балансировке нагрузки.
Тестирование проводилось на AMD Ryzen 9 9950X, 32 ГБ ОЗУ и GPU Radeon RX 7900 XTX. Наибольший прирост производительности наблюдался с Llama, где увеличение частоты таймера привело к росту производительности на 10%.
tomshardware.com
Apple Machine Learning Research опубликовало исследование метода трансферного обучения для графовых нейронных сетей, который значительно улучшает эффективность и точность физического моделирования сложных систем. В работе представлена масштабируемая графовая U-NET (SGUNET), способная адаптироваться к различным размерам сетки и разрешениям.
Предложенный метод позволяет использовать предварительно обученные модели на большом наборе данных (ABC Deformable - ABCD), содержащем 20 000 физических симуляций 3D-форм, для последующей тонкой настройки на целевых задачах с меньшим количеством данных. Это значительно снижает затраты на сбор и аннотацию данных.
Эксперименты на 2 датасетах (2D Deformable Plate и 3D Deforming Plate) показали, что модель, предварительно обученная на ABCD и дообученная на 1/16 части данных, демонстрирует улучшение RMSE на 11.05% по сравнению с моделью, обученной с нуля.
machinelearning.apple.com
Microsoft и Университет Карнеги опубликовали ресёрч о том, что генеративный ИИ оказывает двоякое влияние на когнитивные процессы человека. С одной стороны, ИИ-инструменты снижают воспринимаемую сложность задач, требующих критического мышления. С другой стороны, чрезмерная уверенность в возможностях ИИ приводит к снижению критического мышления и зависимости от сгенерированного контента.
Анализ опроса 319 представителей умственного труда показал, что работники чаще всего используют критическое мышление для обеспечения качества своей работы. При этом, чем выше уверенность работника в собственных навыках, тем больше усилий он прилагает для оценки результатов, предоставляемых ИИ. И наоборот, чем выше уверенность в возможностях ИИ, тем меньше усилий затрачивается на критическое мышление. Исследование также выявило изменения в структуре когнитивных усилий при использовании ИИ - они смещаются от сбора информации к ее проверке, от решения проблем к адаптации ответов ИИ и от выполнения задач к контролю за процессом.
microsoft.com
Новые рекомендации OpenAI указывают на то, что для эффективного использования моделей серии o, стоит отходить от сложных техник промпт-инжиниринга в пользу простых и прямых инструкций. OpenAI предостерегает от использования "boomer prompts" и инструкций вроде "думай шаг за шагом" для этих моделей. Вместо этого рекомендуется давать краткие, четко структурированные указания с использованием разделителей (XML-теги) и четко определять критерии успеха или ограничения.
platform.openai.com
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Forwarded from Machinelearning
Курс содержит пошаговые инструкции с примерами кода, которые помогут научиться создавать автономных агентов с использованием машинного обучения.
Фокус на AI-агентах:
Если вас интересует именно разработка агентов — например, для симуляций, игр или интерактивных систем — данный курс будет полезен.
Каждый урок включает в себя:
- Лекцию, (видео уроки появятся в марте 2025 года)
- Примеры кода на Python с поддержкой Azure AI Foundry и Github Models
- Практические задания
- Ссылки на полезные дополнительные ресурсы
Если это ваш первый опыт работы с агентами, у Microsoft есть еще 1 курс «Генеративный ИИ для начинающих», который содержит 21 урок по построению моделей с помощью GenAI, лучше начать с него.
Переведен на 9 различных языков (русского нет).
▪ Github
@ai_machinelearning_big_data
#course #Microsoft #aiagents #ai #ml #opensource #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
#курс #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🤮1
Forwarded from Machinelearning
⚡️ EasyR1 – эффективный и масштабируемый фреймворк для обучения с подкреплением (RL) с поддержкой мультимодальных данных.
Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.
Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.
Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.
Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.
Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.
▪ Github
#EasyR1 #opensource #GRPO #VLM
Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.
Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.
Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.
Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.
Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.
▪ Github
#EasyR1 #opensource #GRPO #VLM
❤1👍1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Мощная архитектура yf 14 млрд параметров
Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.
Модель поддерживает:
- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.
Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:
- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт
Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.
Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.
Как работает:
▪Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
▪Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
▪Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
▪Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.
Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.
Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.
@ai_machinelearning_big_data
#TexttoVideo #ai #ml #video #wanai
Please open Telegram to view this post
VIEW IN TELEGRAM