#курс #machinelearning #ai
@ai_generative
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
#курс #ai #datascience #deeplearning
freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🔥1🥰1
Forwarded from Machinelearning
RLtools - библиотека глубокого обучения с подкреплением (Deep Reinforcement Learning, DRL) с высокой скоростью работы для разработки и исследования алгоритмов DL.
RLtools написана на C++ и позволяет проводить обучение и вывод моделей DRL на РС, мобильных устройствах и embedded-системах. В экспериментальном тестировании, библиотека обучила алгоритм RL непосредственно на микроконтроллере.
Библиотека поддерживает алгоритмы DRL: TD3, PPO, Multi-Agent PPO и SAC и предлагает набор примеров, демонстрирующих использование этих алгоритмов для решения задач управления на примерах управления маятником, гоночным автомобилем и роботом-муравьем MuJoCo.
Код реализации алгоритмов:
Благодаря оптимизации и использования аппаратного ускорения RLtools в 76 раз быстрее других библиотек. Например, на MacBook Pro с M1 RLtools может обучить модель SAC (управление маятником) за 4 секунды.
Библиотеку можно использовать на Linux, macOS, Windows, iOS, Teensy, Crazyflie, ESP32 и PX4.
RLtools предоставляет Python API, с которым можно использовать библиотеку из Python-кода. API RLtools совместим с библиотекой симуляции сред Gym.
Проекты, использующие RLtools:
# Clone and checkout
git clone https://github.com/rl-tools/example
cd example
git submodule update --init external/rl_tools
# Build and run
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
./my_pendulum
@ai_machinelearning_big_data
#AI #ML #DL #RTools #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Хороших книг по обучению с подкреплением (Reinforcement Learning, RL) уже выпущено достаточно, однако есть пробел между продвинутыми учебниками, в которых основное внимание уделяется одному или нескольким аспектам, и более общими книгами, в которых предпочтение отдается удобочитаемости, а не сложности.
Авторы книги, люди с опытом работы в CS и инжиниринга, подают тему RL в строгом и академическом стиле. Книга основана на конспектах лекций для углубленного курса бакалавриата, который преподается авторами в Тель-Авивском университете.
К этой книге дополнительно идет брошюра с упражнениями и экзаменационными вопросами, которые помогут освоить материал книги на практике. Эти упражнения разрабатывались на протяжении нескольких лет.
Математическая модель книги - Марковский процесс принятия решений (Markov Decision Process, MDP). Основное внимание уделяется: последовательному принятию решений, выбору действий, долгосрочному эффекту от этих действий и разница между немедленным вознаграждением и долгосрочной выгодой.
Тематически книга состоит из двух частей – "Планирование" и "Обучение".
@ai_machinelearning_big_data
#AI #ML #RL #MDP #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
Forwarded from Machinelearning
По мере роста объемов данных и сложности вычислений, вычисления на Python и NumPy, основанные на CPU, нуждаются в ускорении для выполнения современных исследований.
cuPyNumeric разработана, чтобы стать заменой библиотеки NumPy, предоставляя сообществу Python распределенные и ускоренные вычисления на платформе NVIDIA. cuPyNumeric позволяет масштабировать вычисления без изменения кода проектов с одного CPU до суперкомпьютеров с несколькими GPU и вычислительными нодами.
Библиотека построена на Legate, поддерживает родной Python и интерфейс NumPy. cuPyNumeric доступен из conda (версия не ниже 24.1) в legate channel. На системах с GPU пакеты, поддерживающие графические ускорители будут выбраны автоматически во время установки.
Пример эффективности cuPyNumeric - обработка 10 ТБ микроизображений многоракурсной микроскопии в виде одного массива NumPy за один день с визуализаций в режиме реального времени.
# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric
# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms
@ai_machinelearning_big_data
#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Курс включает подкасты, текстовые материалы и практические задания, которые помогут разобраться в следующих темах:
— Основах LLM: от трансформеров до методов тонкой настройки;
— Внедрении и использовании векторных хранилищ/баз данных;
— Создании и работе с ИИ-агентами;
— Специализации LLM для конкретных областей знаний, таких как медицина;
— MLOps для генеративного ИИ.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Курс Математика Машинного обучения: Что такое тензоры.
🔥 Телеграм: https://t.iss.one/ai_machinelearning_big_data
🔥 https://t.iss.one/addlist/2Ls-snqEeytkMDgy - для всех кто любит машинное обучение я собрал крутую папку с самыми полезными ресурсами для изучения
🔥https://colab.research.google.com/drive/1hrYCEJXHaFa1M…
🔥 https://t.iss.one/addlist/2Ls-snqEeytkMDgy - для всех кто любит машинное обучение я собрал крутую папку с самыми полезными ресурсами для изучения
🔥https://colab.research.google.com/drive/1hrYCEJXHaFa1M…
👍3❤2
Forwarded from Machinelearning
🔥 Microsoft только что выпустила Phi-4 LLM, обученный на 9,4 триллионах токенов.
Лицензия MIT!
🤗 HF: https://huggingface.co/microsoft/phi-4
🧠 Demo: https://huggingface.co/spaces/Tonic/Phi-4
@ai_machinelearning_big_data
#phi4 #llm #Microsoft
Лицензия MIT!
🤗 HF: https://huggingface.co/microsoft/phi-4
@ai_machinelearning_big_data
#phi4 #llm #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1👎1