Generative AI
2.4K subscribers
158 photos
45 videos
4 files
149 links
@haarrp - по всем вопросам
Download Telegram
Отличный курс для тех, кто хочет разобраться в нейронках с нуля от Андрея Карпати (OpenAI/Tesla).

Внутри бесплатная серия лекций на YouTube (и репа на GitHub), где ты с нуля учишься собирать нейронки. Всё максимально hands-on:

Автор не просто рассказывает теорию, а пишет код вместе с тобой — от самых азов до тренировки сетей.

https://github.com/karpathy/nn-zero-to-hero/
2
This media is not supported in your browser
VIEW IN TELEGRAM
📈 Vibe coding: чат-приложение на MiniCPM-V 4.5 в anycoder

Чем хороша модель:
- 8B параметров - лёг
кая для локального инференса.
- Средний балл 77.0 на OpenCompass - сводная оценка по 8 популярным бенчмаркам.
- По этим тестам обгоняет ряд проприетарных моделей уровня GPT-4o-latest и Gemini-2.0 Pro, а также сильный опенсорс Qwen2.5-VL 72B в задачах vision-language.
- Фактически самый результативный MLLM до 30B параметров.

Что соберём за сессию:
1) Мини-API для инференса - роут /chat с приемом текста и изображения.
2) Ультралёгкий фронт в anycoder - поле ввода, загрузка картинки, предпросмотр.
3) Набор промпт-темплейтов - описание изображения, OCR-вопросы, разбор скриншотов кода.

Где модель особенно заходит:
- Разбор скринов UI и PDF с таблицами.
- Вопросы по диаграммам и графикам.
- Помощь по коду по фотографиям экрана.

https://huggingface.co/spaces/akhaliq/MiniCPM-V-4_5
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Вопрос только один: что вы сделаете, если встретите его на улице?

@ai_machinelearning_big_data

#UnitreeG1 #robots #ai
Forwarded from Machinelearning
🌟 InfoSeek: синтез данных для deep‑research с формализацией HCSP.

BAAI представила InfoSeek — открытую методику синтеза данных и учебный контур для глубоких исследований. Задачи такого класса выходят за рамки обычного извлечения фактов: модель должна раскладывать вопрос на подзадачи, координировать многошаговое рассуждение и проверять ответы по источникам.

Эти задачи формализуются как HCSP — иерархические задачи удовлетворения ограничений, решение которых возникает только при последовательном сужении кандидатов на нескольких уровнях, где каждый внутренний узел сам является подзадачей, а зависимость между узлами образует дерево исследования.


Базовая идея проста: данные строятся вокруг древа исследования. Вершины - сущности или атомарные факты, ребра - проверяемые отношения из Википедии и открытых страниц. Алгоритм синтеза явно управляет структурой, чтобы исключить недоопределенность или ранние "короткие замыкания".

В HCSP ответ формально равен пересечению множеств, заданных текущими ограничениями и рекурсивными подвопросами; в терминах дерева корень — финальный ответ. Такой подход не только задаёт глубину и ширину рассуждения, но и делает каждый промежуточный шаг проверяемым по конкретным утверждениям.

🟡Синтез выполняет связка из 2 агентов.

Планировщик контролирует глобальную сложность, выбирая цель и тип расширения, а Браузер добывает факты и ссылки из страницы сущности. 4 операции покрывают весь жизненный цикл:

🟢Инициализация из "якоря";

🟢"Размытие родителя" - добавление нескольких независимых условий, которые в совокупности определяют уникальный ответ без включений между кандидатами;

🟢Вертикальное углубление по гиперссылке для увеличения высоты дерева;

🟢Генерация текста вопроса лишь после того, как каждый узел имеет достаточный набор проверяемых ограничений и достигнуты заданные метрики сложности.

Качество контролируется по 2 осям: сложность и проверяемость. Сначала вопросы прогоняются "в лоб": если мощная базовая модель отвечает правильно без поиска, образец исключается, так было отсеяно около 2%. Затем проверяется решаемость на фиксированном наборе страниц с примесями-дистракторами и все двусмысленное удаляется.

Итог: датасет с 50 тыс. пар вопрос–ответ и 16,5 тыс. траекторий размышлений с метками извлечения.

🟡Эксперименты.

Тесты показали, что InfoSeek переносится за пределы домашнего домена. На классических наборах для извлечения фактов и мульти‑hop вопросов компактная модель InfoSeeker‑3B опережает типовые RAG и агентные пайплайны.

На BrowseComp‑Plus с фиксированным корпусом 100K страниц и BM25 точность достигает 16,5% при среднем 8,24 обращения к поиску, что выше, чем у Gemini 2.5 Flash, Sonnet 4 и GPT‑4.1 и значительно выше Qwen3‑32B и Search‑R1‑32B.

Замена обучающего набора NQ+HQA на InfoSeek поднимает точность с 3,0% до 16,5% и делает запросы осмысленно более частыми.

▶️ Из готового у проекта есть датасет, техотчет, конструктор древа данных и код для SFT- трейна. В планах - код RL и публикация весов InfoSeeker‑3B.


📌Лицензирование: Apache 2.0 License.


🟡Датасет
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DeepResearch #Dataset #InfoSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 AI vs рекрутеры: кто лучше проводит собеседования?

Исследование Университета Чикаго и Erasmus University показало, что AI-интервьюеры могут иметь серьёзные преимущества перед людьми.

📊 Результаты на 67 000 соискателей (call-center, Филиппины):
• Кандидаты, прошедшие интервью у чат-бота Anna AI, на 12% чаще получали оффер.
• Среди получивших оффер — на 18% чаще выходили на работу.
• Соискатели вдвое реже жаловались на дискриминацию по полу.
• Anna AI охватывала в среднем 9 тем против 5 у рекрутеров.
• 71% кандидатов оценили опыт интервью с ботом позитивно.

⚠️ Минусы: 5% интервью заканчивались раньше времени, 7% имели техсбои.

💡 Почему это важно:
AI-интервью могут быть более объективными, масштабируемыми и удобными для кандидатов, чем живое интервью с рекрутером. Особенно это заметно в массовом найме для entry-level позиций.

📌 Полный разбор исследования
🔥21🥰1
Forwarded from Machinelearning
🚀 Релиз: Qwen3-Next-80B-A3B - эффективная модель заточенная на работа работу с очень длинным контекстом!

🔹 80B параметров, но активируется только 3B на токен → тренировка и инференс 10x дешевле и быстрее, чем у Qwen3-32B (особенно при 32K+ контексте).
🔹 Гибридная архитектура: Gated DeltaNet + Gated Attention → сочетает скорость и точность.
🔹 Ultra-sparse MoE: 512 экспертов, маршрутизируется 10 + 1 общий.
🔹 Multi-Token Prediction → ускоренное speculative decoding.
🔹 По производительности обходит Qwen3-32B и приближается к Qwen3-235B в рассуждениях и long-context задачах.

🟢Qwen3-Next-80B-A3B-Instruct показатели почти на уровне 235B flagship.
🟢 Qwen3-Next-80B-A3B-Thinking превосходит Gemini-2.5-Flash-Thinking.

Попробовать: https://chat.qwen.ai
Анонс: https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
HuggingFace: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
Kaggle: https://kaggle.com/models/qwen-lm/qwen3-next-80b
Alibaba Cloud API: https://alibabacloud.com/help/en/model-studio/models#c5414da58bjgj

@ai_machinelearning_big_data

#AI #LLM #Qwen #DeepLearning #MoE #EfficientModels #LongContext #Reasonin
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
📈 Гайд по продвинутым вопросам для разработчика LLM

Собеседования на позицию разработчика больших языковых моделей (LLM) в топовых AI-компаниях предъявляют высокие требования к знаниям.

Кандидату необходимо понимать устройство архитектуры трансформеров, владеть методами эффективного обучения и инференса, разбираться в оптимизациях памяти и скорости (таких как LoRA, FlashAttention, vLLM, ZeRO), знать тонкости распределённого тренинга, принципов LLMOps (MLOps для больших моделей) и нюансов продакшн-развертывания LLM.

Также часто проверяют умение решать реальные задачи: от проектирования пайплайна для Sparse MoE до анализа проблем с памятью на GPU, понимания различий между методами обучения с подкреплением (RLHF vs DPO) и способов масштабирования моделей.

Этот гайд структурирован по ключевым темам, соответствующим областям знаний, которые обычно проверяются на собеседованиях. Для каждой темы мы рассмотрим, что пытаются проверить интервьюеры, приведём пример формулировки вопроса и дадим подробный разбор ответа с обсуждением трэйд-оффов, примеров кода или схем, где это уместно. Вы можете изучать материал по разделам, чтобы сфокусироваться на интересующей области.

👉 Гайд
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍1
✔️ Математика в машинном обучении» - бесплатный курс, который предназначен для тех, кто хочет углубить свои знания в области математики, необходимой для понимания и применения методов машинного обучения и искусственного интеллекта.

Этот курс охватывает ключевые математические концепции, лежащие в основе современных алгоритмов машинного обучения, таких как линейная алгебра, теория вероятностей, статистика и оптимизация.

Курс
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1
ByteDance представила FaceCLIP - новую модель для генерации изображений с сохранением личности

Модель FaceCLIP обучается представлять лицо (Identity) и текстовое описание в едином векторном пространстве, что позволяет создавать изображения, где сохраняется похожесть субъекта и при этом учитывать желаемую стилистику или указания из текста. :contentReference[oaicite:0]{index=0}

Авторы отказались от подходов с адаптерами и предложили унифицированную мультимодальную стратегию кодирования: лицо + текст → общее представление, которое направляет генеративную модель (UNet / DiT) при синтезе.

Преимущества FaceCLIP:
- лучшие результаты в сохранении идентичности на портретах
- более точное соответствие текстовым инструкциям
- высокая реалистичность по сравнению с предыдущими методами
Модель доступна под лицензией MIT / некоммерческое исследовательское использование — с предупреждением об ответственном использовании. :contentReference[oaicite:4]{index=4}

📄 HF: https://huggingface.co/ByteDance/FaceCLIP
1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 ИИ генерации стали так реалистичны, что сами отказываются верить, что они сгенерированы.
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Художник представил анимацию, посвящённую эволюции глубокого обучения.

Работа под названием “Evolution of Deep Learning by Hand” визуально показывает, как развивались ключевые идеи, сформировавшие современный мир нейросетей.
Автор вручную изобразил путь от первых искусственных нейронов до сложных архитектур, чтобы почтить вклад Хинтона — одного из основателей глубокого обучения и лауреата Нобелевской премии.
Please open Telegram to view this post
VIEW IN TELEGRAM
2
🧠 Thinking Machines представила - On-Policy Distillation

Исследователи из Thinking Machines Lab предложили метод, который может изменить то, как обучаются языковые модели. Он называется on-policy distillation - и учит ИИ не просто копировать, а думать и анализировать свои ошибки.

Обычно «дистилляция» работает просто: большая модель-учитель показывает ответы, а маленькая модель-ученик запоминает их. Это похоже на заучивание по шпаргалке - быстро, но без понимания сути.

В новом подходе всё иначе. Ученик сам решает задачи, а учитель оценивает и направляет - объясняет, где логика сбоит и как улучшить рассуждение. Таким образом, меньшая модель перенимает не только знания, но и способ мышления более крупной модели.

Что показали результаты

Эксперименты проводились на задачах математического и логического рассуждения, где важно не просто выдать правильный ответ, а выстроить цепочку шагов.

Результаты впечатляют:

Модель-ученик после обучения с on-policy distillation показала почти ту же точность, что и гораздо более крупная модель-учитель.

При этом вычислительные затраты снизились в несколько раз, делая модель заметно эффективнее и дешевле.

Кроме того, ученик стал лучше понимать собственные ошибки, что повысило устойчивость и надёжность при решении новых, незнакомых задач.

Почему это важно
On-policy distillation решает ключевую проблему традиционных методов - отсутствие адаптивности.
Модель теперь учится на собственных шагах, как человек, — экспериментирует, ошибается, корректирует поведение и растёт.

Уникальность подхода - в балансе между качеством RL и экономичностью KD. Это реальная схема, где маленькая модель учится “в поле” (реагируя на собственные действия), но без дорогих RL-запусков и сложных reward-моделей.

Это не новый метод обучения, а новая инженерная формула, которая позволяет дешевле «учить» компактные модели, ведущие себя как большие.

Это открывает путь к созданию компактных LLM нового поколения, которые рассуждают почти как топовые модели, но стоят в разы дешевле.

Такие модели можно запускать на edge-устройствах, в автономных агентах и локальных сервисах, где важны скорость, приватность и энергоэффективность.

🟠 Подробнее: thinkingmachines.ai/blog/on-policy-distillation/

@ai_machinelearning_big_data


#ThinkingMachines #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥1🙏1
✔️ Foxconn внедрит человекоподобных роботов на производстве ИИ-серверов.

Крупнейший в мире контрактный производитель электроники в течение 6 месяцев начнет использовать человекоподобных роботов на своем заводе в Техасе. Роботы будут задействованы в сборке серверов для ИИ-систем. По словам CEO Янг Лю, это первый подобный опыт за более чем 50-летнюю историю Foxconn.

Этот шаг является частью стратегии по агрессивному расширению производства в Северной Америке. Компания, являясь ключевым поставщиком Nvidia, считает Северную Америку своим главным хабом по выпуску ИИ-серверов на ближайшие 3 года. Решение о роботизации принято для повышения эффективности производства, которое, по словам Лю, критически важно в сфере ИИ.
asia.nikkei.com
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ ElevenLabs Scribe v2 Realtime: STT-модель с задержкой менее 150 мс.

ElevenLabs представила Scribe v2 Realtime, новую модель Speech-to-Text, разработанную для задач, требующих минимальной задержки: голосовых агентов, ассистентов для совещаний и создания субтитров в реальном времени. Система обрабатывает речь с задержкой менее 150 мс, поддерживает более 90 языков и демонстрирует точность 93.5% по 30 популярным языкам. Особое внимание уделено работе с аудиозаписями, содержащими фоновый шум.

Фишкой модели стала «отрицательная задержка» - функция предсказывания следующего слова и знака препинания. Также есть автоматическое определение языка, обнаружение голоса и полный контроль над фиксацией сегментов транскрипции. Сервис готов к корпоративному использованию (SOC 2, GDPR) и уже доступен через API.
elevenlabs.io

✔️ Backboard установила рекорд в тесте долговременной памяти для ИИ.

Платформа для ИИ-агентов Backboard достигла рекордного показателя в 90.1% в бенчмарке LoCoMo, предназначенном для оценки долговременной диалоговой памяти. Это лучше предыдущих показателей популярных библиотек, которые находились в диапазоне 67–69%.

LoCoMo тестирует способность системы запоминать, обновлять и извлекать факты о пользователе и контекст диалога на протяжении многих сессий. Высокий балл означает, что ассистенты будут лучше следовать инструкциям, реже переспрашивать и требовать более коротких промптов, что снижает расход токенов.

Backboard предоставляет API для долгосрочной памяти, мультимодельный API для роутинга между 2200+ LLM и RAG-слой. Все результаты теста воспроизводимы - скрипты, логи и промпты опубликованы на GitHub.
backboard.io

✔️ Две трети топовых ИИ-компаний допустили утечку секретов на GitHub.

Компания по облачной безопасности Wiz обнаружила, что 65% компаний из списка Forbes AI 50 допустили утечку API-ключей, токенов и других учетных данных на GitHub. По словам исследователей, это могло привести к раскрытию приватных моделей, данных обучения или внутренней структуры организаций.

Чаще всего секреты находили в файлах Jupyter Notebook и Python-скриптах. Среди утечек были токены Hugging Face, Azure и W&B. В одном из случаев скомпрометированный токен Hugging Face мог открыть доступ к тысяче приватных моделей.

Wiz публично назвала только ElevenLabs и LangChain, отметив их быструю реакцию. При этом почти половина всех уведомлений об утечках, отправленных другим компаниям, осталась без ответа.
wiz.io

✔️ Cloudflare запустила поддержку Python в сервисе Workflows.

Cloudflare объявила о поддержке Python в своем сервисе Workflows, предназначенном для создания и управления многоэтапными процессами на платформе Workers. Раньше инструмент был доступен только для TypeScript.

Новшество открывает сервис для сообщества Python-разработчиков, специализирующихся на AI/ML и обработке данных. В качестве примеров использования компания приводит оркестрацию конвейеров данных, обучение ML-моделей и создание сложных ИИ-агентов, архитектура которых упрощается за счет встроенной обработке ошибок и сохранению состояния. Технически часть реализована через Pyodide — порт CPython в WebAssembly.
blog.cloudflare.com

✔️ OpenAI тратит на Sora около 15 млн. долларов в день.

По оценкам аналитиков, затраты на видеогенератор Sora обходятся OpenAI в $15 млн. в день, что в годовом выражении превышает $5 млрд. Расчеты основаны на стоимости генерации одного 10-секундного ролика, которая составляет для компании около $1.3, и предполагаемом объеме в 11 млн. видео ежедневно. Несмотря на убыточность, OpenAI, вероятно, следует классической стратегии захвата рынка, стремясь сначала сформировать аудиторию, а уже потом искать пути монетизации. Бесплатный доступ также насыщает компанию огромным количеством данных для дальнейшего обучения моделей.

Впрочем, Сэм Альтман уже подтвердил, что компания планирует сокращать объемы бесплатной генерации. По его словам, ни одна рекламная модель не сможет покрыть расходы на создание «забавных мемов для трех друзей».
forbes.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 LLM Council: на ваши запросы отвечает совет из языковых моделей.

Андрей Карпаты опять выходит на связь опубликовал очередной vibecode проект.

Его идея в том, что вместо того, чтобы задавать вопрос одной LLM, вы можете объединить их в «Совет моделей».

LLM Council - это простое локальное веб-приложение, с интерфейсом как у ChatGPT, но с той разницей, что запрос отправляется через Openrouter нескольким LLM. Полученные ответы перекрестно оцениваются и ранжируются, и, наконец, «модель-председатель совета» формирует окончательный ответ.

Более подробно процесс выглядит так:

🟢Этап 1: Сбор мнений. 
Запрос отправляется всем моделям по отдельности, и их ответы собираются. Ответы каждой модели отображаются в отдельной вкладке, чтобы можно было их посмотреть вручную.

🟢Этап 2: Рецензирование. 
Каждая модель получает ответы других моделей. При этом идентификаторы анонимизированы, чтобы исключить «игру в любимчиков» при оценке чужих результатов. На этом этапе ответы ранжируются их по точности и глубине анализа.

🟢Этап 3: Итоговый ответ. 
Модель-председатель принимает все ответы моделей и компилирует их в единый окончательный ответ.


⚠️ Для использования нужен API-ключ OpenRouter. На платформе есть бесплатные модели


🖥Github


@ai_machinelearning_big_data

#AI #ML #LLMCouncil #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1