Generative AI
2.34K subscribers
138 photos
34 videos
4 files
133 links
@haarrp - по всем вопросам
Download Telegram
Forwarded from Machinelearning
«Values in the Wild»: глубокое погружение в ценностные ориентиры ИИ

В новом исследовании Anthropic команда провела первый в своём роде анализ «выхлопа» языковой модели Claude 3/3.5, чтобы понять, какие именно нормативные ценности она проявляет в реальных диалогах. Вот суть для специалистов по машинному обучению:

✔️ Задача
Выявить и таксономизировать ценности, на которых основаны ответы Claude, когда модель без прикрас взаимодействует с запросами пользователей.

🌟 Методология

Проанализировано 308 210 анонимизированных сессий Claude (18–25 февраля 2025).

Ценности извлекались автоматически «защитным» пайплайном, без прямого доступа людей к чату.

Собрана таксономия из 3 307 уникальных понятий, сгруппированных в пять крупных доменов: практические, эпистемические, социальные, защитные и личностные.

🌟 Ключевые выводы

Практика и знание. Более 50 % упоминаний — «эффективность», «точность», «прозрачность» и «профессионализм».

Контекстуальная гибкость. В разговоре об отношениях модель ценит «личные границы», в этических дискуссиях — «автономию человека».

Типы реакции. В большинстве случаев Claude поддерживает ценности пользователя, однако в ~3 % диалогов она «сопротивляется», отстаивая «предотвращение вреда» выше нарушений инструкций.

💡 Значение для ML‑практики

Составлена карта ценностей, которая позволяет выявлять «узкие места» alignment‑стратегий.

Таксономия и статистика реакций помогают прогнозировать поведение LLM в разных сценариях и проектировать более надёжные системы.

Подход демонстрирует, как можно сочетать автоматический анализ и приватность данных для глубокой оценки качественных характеристик модели.

🔜 Подробнее в полном тексте исследования:
https://anthropic.com/research/values-wild

🔜 Это ссылка на открытый датасет, в котором собраны все «ценности», выявленные у модели Claude 3/3.5 в исследовании «Values in the Wild».

#Anthropic #Claude
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 У OpenAI — свежие апдейты, и они реально крутые:

📌 Больше GPT-доступа для всех:
Теперь o4-mini доступна даже бесплатным пользователям!
А у подписчиков на $20 — обновлённые лимиты:
▪️ 100 сообщений в неделю для GPT-3.5 (o3)
▪️ 100 сообщений в день для GPT-4-mini-high (o4-mini)

📌 Прокачанный генератор изображений:
Теперь он работает не только в ChatGPT —
▪️ Встраивается прямо в Figma и приложения Adobe
▪️ Доступен через API для разработчиков
▪️ Поддерживает мульти-генерацию и выбор качества 🎨

😱 Можно генерить пачку картинок, сразу сравнивать и выбирать лучшие. Это реальный буст для дизайнеров, продакт-тимов и креаторов.
👍83
This media is not supported in your browser
VIEW IN TELEGRAM
Благое собрал лучшие БЕСПЛАТНЫЕ альтернативы платным нейросетям:

Grok Илона Маска (ChatGPT) —обеспечивает точные и быстрые ответы с учетом контекста, поддерживая профессиональный уровень общения.

Qwen (Claude) — типовая языковая модель от Alibaba, которая обеспечивает высокую точность в генерации текста, переводах и ответах на сложные запросы.

Ideogram (KlingAI) — отлично генерирует высококачественные изображения, включая логотипы и иллюстрации, на основе текстовых описаний.

HailuoAI (MidJourney) — нейросеть, которая генерирует реалистичные изображения из текстовых описаний.

Fotor(Photoshop) — отредактирует изображения по тексту, предлагая удобный интерфейс для создания креативного контента и дизайна.


Сохраняем, чтобы не потерять.
👍71
🖥 Курс: создание GPT с нуля!

🕞 Продолжительность: 1:56:19

🔗 Ссылка: *клик*

#курс #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
🔥 GlobalGPT — неприлично мощный сборник нейросетей в одном сервисе

Это платформа с доступом к сотням лучших моделей и агентов, которые справляются с любыми задачами: от привычной генерации текста и изображений до помощи в общении с партнером или просчета бюджета для бизнес-проекта.

Удобная навигация по категориям, галерея ваших созданных картинок и гибкий список инструментов, который можно настроить под себя. Всё в одном клике.

https://glbgpt.com/
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥1
Проклято: YouTube теперь будет показывать рекламу в самые важные моменты видео, благодаря Gemini.

ИИ анализирует весь хронометраж и ищет пиковые и самые популярные моменты, чтобы прямо там разместить рекламу.
😱2👍1
🔥 9 бесплатных курсов от HuggingFace по искусственному интеллекту!

Хотите освоить передовые технологии ИИ? HuggingFace подготовили топовые бесплатные курсы, чтобы вы могли обучать, настраивать и развертывать большие языковые модели и не только 🚀

Базовый курс по LLM
Узнайте, как работать с HuggingFace Transformers: обучение, тонкая настройка, деплой.
👉 https://huggingface.co/learn/llm-course/chapter1/1

Курс по AI-агентам
Создавайте многошаговые AI-агенты с LangChain и HF.
👉 https://huggingface.co/learn/agents-course/unit0/introduction

Курс по глубокому обучению с подкреплением (Deep RL)
Учите агентов принимать решения и адаптироваться к среде.
👉 https://huggingface.co/learn/deep-rl-course/unit0/introduction

Курс по компьютерному зрению
Изучите детекцию объектов, сегментацию и классификацию изображений.
👉 https://huggingface.co/learn/vision-course/chapter0/introduction

Курс по работе с аудио
Применяйте трансформеры для распознавания речи, анализа музыки и синтеза.
👉 https://huggingface.co/learn/audio-course/chapter0/introduction

Курс по ML для игр
Как ИИ меняет игры: поведение NPC, генерация уровней и многое другое.
👉 https://huggingface.co/learn/ml-games-course/unit0/introduction

Курс по ML для 3D
Работа с 3D-данными: облака точек, сетки и графика с ML.
👉 https://huggingface.co/learn/ml-for-3d-course/unit0/introduction

Курс по диффузионным моделям
Изучите DALL·E и Stable Diffusion изнутри и создавайте изображения сами.
👉 https://huggingface.co/learn/diffusion-course/unit0/1

Кулинарная книга по открытому ИИ (Open-Source AI Cookbook)
Практические ноутбуки от реальных разработчиков — копируйте, учитесь, создавайте свои проекты!
👉 https://huggingface.co/learn/cookbook/index

💡 Идеально для разработчиков, студентов и энтузиастов ИИ. Не упустите шанс освоить самые горячие технологии бесплатно!
👍21
📢 Рады представить вам подборку популярных каналов на тему IT и искусственного интеллекта! 🤖

Технологии становятся важной частью нашей жизни, и искусственный интеллект меняет не только бизнес, но и повседневность.

🌟Что интересного:

Технологические достижения: Следите за новыми прорывами в IT, чтобы понимать их влияние на вашу жизнь и бизнес.

Влияние на повседневность: Виртуальные помощники и персонализированные приложения делают жизнь удобнее и продуктивнее.

Оптимизация бизнеса: Современные технологии помогают компаниям автоматизировать
процессы и принимать обоснованные решения.

Образование: Адаптивное обучение на основе ИИ делает образование доступнее и эффективнее.

Будущее IT: Следите за трендами, такими как квантовые вычисления и интернет вещей

👉ЗАБРАТЬ ПОДБОРКУ👈
Forwarded from Python/ django
🧠 Как клонировать голос с помощью Open Source (Coqui TTS)

Хочешь, чтобы ИИ говорил твоим голосом? Без подписок, платных API и ограничений? Вот подробная инструкция, как клонировать свой голос с нуля с помощью open-source инструментов:

🔧 Установка


sudo apt install ffmpeg
pip install TTS soundfile torchaudio gradio

git clone https://github.com/coqui-ai/TTS.git
cd TTS
pip install -e .

🎙️ 1. Подготовка записи голоса

Тебе нужен файл .wav:
- продолжительность: от 1 минуты
- формат: моно, 16 кГц, 16-bit

Пример конвертации:

ffmpeg -i input.mp3 -ac 1 -ar 16000 output.wav


🧬 2. Генерация эмбеддинга твоего голоса


from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts

config = XttsConfig()
model = Xtts.init_from_config(config)
model.load_checkpoint("tts_models/multilingual/multi-dataset/xtts_v2")

voice_sample = "your_voice.wav"
speaker_embedding = model.get_speaker_embedding(voice_sample)

📤 3. Генерация речи с твоим голосом


text = "Привет! Я теперь могу говорить твоим голосом."
wav = model.tts(text, speaker_embedding=speaker_embedding)
model.save_wav(wav, "output.wav")


💻 4. (Опционально) Интерфейс с Gradio


import gradio as gr

def speak(text):
wav = model.tts(text, speaker_embedding=speaker_embedding)
path = "generated.wav"
model.save_wav(wav, path)
return path

gr.Interface(fn=speak, inputs=gr.Textbox(), outputs=gr.Audio()).launch()


Быстрый способ (через CLI)


tts --model_name "tts_models/multilingual/multi-dataset/xtts_v2" \
--text "Привет, мир!" \
--speaker_wav path/to/your.wav \
--out_path output.wav


⚠️ Важно


- 💻 Работает на CPU, но лучше с GPU.
- 🌐 Поддерживает русский язык.

@pythonl
3👍3🔥3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ EleutherAI представила лицензированный датасет для обучения ИИ-моделей.

EleutherAI выпустила The Common Pile v0.1 — 8-терабайтный набор данных для тренировки моделей, собранный при участии Hugging Face и академических институтов. В него вошли более 20-ти публичных источников, На базе датасета созданы Comma v0.1-1T и Comma v0.1-2T (по 7 млрд параметров), которые, по заявлению разработчиков, не уступают моделям, обученным на нелицензированном контенте.

Модели показывают сильные результаты в прораммировании и математике, опровергая мнение, что только "пиратский" контент обеспечивает качество. Релиз датасета - это попытка исправить ошибки прошлого: ранее EleutherAI критиковали за использование защищенного авторским правом контента в старом датасете The Pile.
huggingface.co

✔️ OpenAI вынуждена сохранять данные пользователей ChatGPT из-за судебного решения по иску NYT.

OpenAI получила судебный приказ о временном хранении данных пользователей ChatGPT и API, даже если они были удалены. Это связано с иском New York Times о нарушении авторских прав. NYT требует сохранить «всю переписку и контент» для использования в качестве доказательств.

Под приказ попадают данные пользователей бесплатных и платных версий ChatGPT (Plus, Pro, Team), а также API-клиенты без соглашения о нулевом хранении данных. Корпоративные клиенты и образовательные проекты в безопасности — их информация не попадает под приказ.

OpenAI назвала требование чрезмерным, подчеркнув, что обычно удаляет данные через 30 дней и подала апелляцию, но временно соблюдает решение.
openai.com

✔️ MIT & Recursion Boltz-2: модель прогнозирования взаимодействия молекул.

MIT CSAIL и Recursion разработали Boltz-2 — открытую модель для анализа биомолекулярных структур и связывания. Она сочетает рекордную скорость и точность, превосходя AlphaFold3 и других конкурентов.

Boltz-2 предсказывает, как молекулы взаимодействуют, с точностью, близкой к физическим методам FEP, но в 1000 раз быстрее. Разработчики надеются, что публикация модели облегчит поиск лекарств, ведь Boltz-2 может за час перебрать тысячи соединений вместо недель вычислений.
globenewswire.com

✔️ AMD пополнилась командой стартапа Untether AI.

AMD объявил о покупке ключевых специалистов из стартапа Untether AI, разработавшего энергоэффективные чипы для ИИ-инференса. Сделка должна укрепить возможности компании в области компиляторов и проектирования чипов.

Untether AI, основанный в 2018 году, славился архитектурой «at-memory», повышающей производительность в дата-центрах и на EDGE-устройствах. Их плата speedAI240 Slim показала рекордную энергоэффективность: в 3–6 раз выше аналогов по тестам MLPerf.

Сделка стала частью стратегии AMD по конкурированию с Nvidia. Ранее, приобретя стартап Brium, компания усилила оптимизацию ИИ-нагрузок на GPU Instinct. Теперь фокус смещается на интеграцию новых технологий в продукты, ориентированные на растущий рынок ИИ.
crn.com

✔️ Фестиваль ИИ-фильмов в Нью-Йорке.

В Нью-Йорке прошел ежегодный фестиваль ИИ-фильмов от Runway. За 3 года проект вырос от 300 до 6000 заявок, а в этом году представил десятку короткометражек, созданных с помощью ИИ. Лучшей стала «Total Pixel Space» Джейкоба Алдера, исследующая математические границы digital-изображений.

По словам организаторов, технологии ускоряют процессы кинопроизводства и фестиваль делает акцент на том, как ИИ поддерживает, а не заменяет творцов.
apnews.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ Google запускает функцию Audio Overviews в поиске.

Google объявила о запуске экспериментальной функции Audio Overviews, которая генерирует аудио-сводки для поисковых запросов. Новинка основана на новых моделях Gemini и направлена на упрощение восприятия информации для пользователей, предпочитающих аудиоформат. Функция пока доступна в программе Labs, ее активируют автоматически, если система считает, что обзор будет полезен.

К аудио Google добавит ссылки на источники, чтобы слушатели могли углубиться в тему. Пользователи могут оценивать обзоры, отправляя обратную связь через кнопки «нравится»/«не нравится».
blog.google

✔️ Технические гении из Кремниевой долины идут в армию для внедрения ИИ в военные операции.

ВС США создали отряд резервистов "201", куда вошли топ-менеджеры Palantir (Шьям Санкар, CTO) , Компании Марка Цукерберга (Эндрю Босворт, СТО) и OpenAI (Кевин Вейл и Боб Макгрю). Все "новобранцы" получили звания подполковников, их задача - внедрять ИИ в планирование и операции армии и ускорять трансформацию подразделений.

Эксперты будут работать удаленно, минимум 120 часов в год, не проходя базовой подготовки. Palantir уже сотрудничает с армией с 2008 года (проект Maven, $480 млн) по интеграции ИИ. IT-гигант Цукерберга, в свою очередь, связан с Anduril, поставляющей «умные» очки. OpenAI, несмотря на прошлые обещания не разрабатывать военные продукты, также участвует в партнерствах с военными.
theregister.com

✔️ Нью-Йорк принимает закон о безопасности ИИ.

Законодатели Нью-Йорка одобрили RAISE Act, направленный на предотвращение масштабных катастроф, вызванных передовыми ИИ-моделями от компаний OpenAI, Google и Anthropic. Закон требует публиковать отчеты о безопасности, сообщать об инцидентах и грозит штрафами до $30 млн. Регулирование коснется лишь крупных игроков, потративших свыше $100 млн на вычисления.

Авторы закона подчеркнули, что он не должен тормозить стартапы или научные исследования, в отличие от провалившегося законопроекта SB 1047 в Калифорнии. Однако критики, включая Andreessen Horowitz и Anthropic, утверждают: требования слишком широки и могут ударить по малым компаниям.
В настоящее время RAISE Act ждет подписи губернатора штата.
nysenate.gov

✔️ Topaz Labs анонсировала веб-инструмент Astra для апскейлинга видео до 4K.

Astra — веб-сервис для улучшения качества видео, который масштабирует контент до 4K, сохраняя детали. Инструмент подойдет как для творческих экспериментов, так и для точного восстановления кадров: пользователи могут регулировать интенсивность обработки или фокусироваться на резкости.

Astra поддерживает до 120 кадров в секунду и замедление в 8 раз с плавной интерполяцией кадров. Topaz Labs позиционирует Astra как полезный инструмент для ремастеринга старых записей или улучшения медийных проектов.
Открыта запись в лист ожидания доступа к сервису.
Topaz Labs в сети X

✔️ TikTok запустил 3 новых инструмента для автоматической генерации видео для рекламы.

«Image to Video» превращает статичные изображения в пятисекундные клипы. Рекламодатели загружают изображение, добавляют текстовый запрос и получают несколько вариантов видео, которые можно комбинировать в более длинные ролики.

«Text to Video» позволяет генерировать видео только на основе текста, без изображений или шаблонов. Третий инструмент, «Showcase Products», добавляет цифровые аватары, которые держат продукты, примеряют одежду или показывают приложения на смартфоне, делая рекламу более живой и похожей на пользовательский контент.

Все видео помечаются как сгенерированные ИИ и могут интегрироваться в Adobe Express и WPP Open. TikTok не раскрывает, какие именно модели используются.
newsroom.tiktok.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥21
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
Как сгенерировать миллиард демо-примеров для обучения роботов?

Проект Dex1B показывает, как это сделать просто — с помощью симуляции и генеративных моделей!

📌 Цель проекта: создать масштабный датасет для двух задач:
Grasping — захват объектов 🖐️
Articulation — манипуляции с подвижными частями робота

Как это работает:

1. Создание Seed-датасета
Сначала используется оптимизационный алгоритм, чтобы вручную (или полуавтоматически) собрать небольшой, но точный набор демонстраций — так называемый *Seed Dataset*.

2. Обучение генеративной модели
На основе Seed-датасета обучается DexSimple— простая C-VAE модель (Conditional Variational Autoencoder). Она умеет порождать новые сцены, основываясь на контексте: тип объекта, поза руки, желаемое взаимодействие.

3. Масштабирование до 1 миллиарда
С помощью DexSimple создаются миллиарды новых демонстраций. При генерации учитывается разнообразие поз и объектов: используется преднамеренное «смешение» данных, чтобы не переобучаться на узком распределении.

4. Симуляция и проверка
Все демонстрации валидируются в физическом симуляторе ManiSkill/SAPIEN. Только успешные взаимодействия остаются в финальном наборе.

✔️ Что внутри:

- Grasping-сцены (1 млн штук): построены на базе ассетов из Objaverse
- Articulation-сцены: используют объекты из PartNet-Mobility — богатая коллекция с подвижными частями (двери, ящики, рычаги и т.п.)
- Каждая сцена содержит: 3D-модель объекта, позу руки, физику взаимодействия и результат

Почему это важно:

- Ручной сбор миллиардов примеров невозможен — здесь это решается генеративным путём
- Dex1B создаёт разнообразные и физически валидные примеры
- Это открывает путь к масштабному обучению роботов с использованием имитационного обучения


🟡 Сайт проекта: https://jianglongye.com/dex1b)
🟡Статья : https://jianglongye.com/dex1b/static/dex1b.pdf

@ai_machinelearning_big_data

#ai #robots #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🎯 Хочешь следить за загрузкой своей GPU прямо из Python?

Вот простой скрипт, который показывает текущую загрузку видеокарты NVIDIA (через `nvidia-smi`). Подходит для мониторинга в ML-задачах, инференсе и просто для интереса.

📦 Зависимости: установленный nvidia-smi и Python 3.6+

🧠 Код:


import subprocess

def get_gpu_utilization():
try:
result = subprocess.check_output(
['nvidia-smi', '--query-gpu=utilization.gpu,memory.used,memory.total',
'--format=csv,nounits,noheader'],
encoding='utf-8'
)
lines = result.strip().split('\n')
for idx, line in enumerate(lines):
gpu_util, mem_used, mem_total = map(str.strip, line.split(','))
print(f"🖥 GPU {idx}: {gpu_util}% load | {mem_used} MiB / {mem_total} MiB")
except FileNotFoundError:
print(" nvidia-smi not found. Make sure NVIDIA drivers are installed.")
except Exception as e:
print(f"⚠️ Error: {e}")

get_gpu_utilization()


📊 Вывод будет примерно такой:

GPU 0: 23% load | 412 MiB / 8192 MiB

🔥 Советы:
• Можно запускать в цикле для live-мониторинга
• Легко интегрировать в Telegram-бота или Slack-уведомления
• Работает на всех машинах с установленным NVIDIA драйвером и nvidia-smi
2👍2🔥1🥰1
5👍1
Forwarded from Machinelearning
📌 ICONIQ: Плейбук архитектора ИИ-систем 2025.
 
Iconiq Capital опросила 300 руководителей ИИ-стартапов с доходом от $10 млн. до $1 млрд. о том, как эти стартапы используют ИИ и собрала результаты в отчет "ICONIQ AI Builder’s Playbook 2025"

Iconiq Capital - американская компания по управлению инвестициями, основанная в 2011 году. Функционирует как гибридный семейный офис и имеет тесные связи с компанией Марка Цукерберга. Компания предоставляет услуги по инвестиционному менеджменту, частному капиталу, венчурным инвестициям, управлению недвижимостью и филантропии для состоятельных семей и организаций.


▶️Очень кратко:

Эра экспериментальных ИИ-демо закончилась. Сейчас компании массово переходят к боевому использованию генеративных моделей - и тут уже не про «вау», а про ROI, стоимость инференса и объяснимость.


🟡AI-native vs AI-enabled

Компании, с нативными ИИ-продуктами, сильно опережают тех, кто "добавил ИИ". Почти половина стартапов нативных ИИ-продуктов уже достигла масштабирования (47% против 13% у ретрофитеров).

В продуктовом портфеле такой типовой компании в среднем 2,8 модели и они активно идут по пути агентных сценариев, причем многие строят архитектуру с возможностью быстрого свапа моделей.


🟡Ценообразование и монетизация.

ИИ ломает старые цены и бизнес-модели. 38% компаний используют гибридное ценообразование (подписка + плата за использование), ещё 19% — только за использование а 6% уже экспериментируют с outcome-based моделями.

Пока 40% включают ИИ в премиум-пакет, но 37% планируют пересмотреть подход, учитывая реальные метрики использования и отдачу.

🟡Команда и расходы. 

ИИ перестал быть задачей «R&D-уголка». В быстрорастущих компаниях до 37% инженеров работают над ИИ, а AI/ML-инженеров нанимают в среднем за 70+ дней. И это большая проблема.

ИИ забирает до 20% R&D-бюджета, причем по мере роста проекта расходы смещаются с найма в сторону инференса и инфраструктуры.

 
🟡Инструменты и инфраструктура. 

68% компаний используют только облако, ещё 64% сидят на внешних API. OpenAI/GPT - лидер (81%), но растет доля мульти-модельных подходов (Claude, Gemini, Mistral и др.).

NVIDIA по-прежнему доминирует в инференсе: TensorRT и Triton используют 60% команд, но и ONNX Runtime (18%) с TorchServe (15%) укрепляют позиции.

Из инструментов для оркестрации лидируют LangChain и Hugging Face, а для мониторинга — Datadog и LangSmith (~17%). MLOps по-прежнему на MLflow (36%) и Weights & Biases (20%).


🟡Что тормозит развитие. 

Самое сложное в развертывании продуктов оказалось не в коде, а в доверии и эффективности:

42% компаний говорят о проблемах доверия и объяснимости, 39% — не могут показать ROI, 38% — борются с галлюцинациями, а 32% — с высокой стоимостью инференса, а доступ к GPU — проблема лишь для 5%.

Главный вывод: чтобы внедрить ИИ, одной модели не достаточно, еще нужно обосновать ее бизнес-ценность и держать под контролем поведение.
 
🟡ИИ внутри стартапов.

77% команд используют ИИ для помощи в разработке (GitHub Copilot почти у всех), 65% — для генерации контента, 57% — для поиска знаний.
Те, у кого ИИ активно используется получают 15–30% прироста эффективности. Самые распространенные юзкейсы: кодинг, аналитика, поиск по внутренней документации.


Самое неожиданное
Несмотря на популярность OpenAI, стоимость API и непредсказуемость инференса — головная боль даже у тех, кто платит миллионы в месяц.


🔜 Ознакомиться с полным отчетом

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Генератор крутых 3D-моделей прямо в браузере — мир новая нейронка Hunyuan3D-PolyGen, способная превратить в шедевр обычную картинку.

Супер сетка, модели на 10 тысяч полигонов — можно сразу использовать в своих проектах. Есть экспорт во все популярные форматы.

Все бесплатно — пробуем.

@ai_generative
2👍2
This media is not supported in your browser
VIEW IN TELEGRAM
Cамый непредвзятый ИИ - Грок теперь ищет ответы на неудобные вопросы в твитах Маска

Похоже, xAI затюнили после того, как Грок превратился в Гитлера, поэтому в системную подсказку добавили промпт, принимающий во внимание мнение отца-основателя.

Это все, что вы должны знать о самом честном и непредвзятом ИИ.